

Report on operation and data analysis from R/V

monitoring for MSFD

Deliverable Nr. 3.7

Project Full title		Policy-oriented marine Envi in the Southern EUropean Se			
Project Acronym		PERSEUS			
Grant Agreement N	0.	287600			
Coordinator		Dr. E. Papathanassiou			
Project start date a	nd duration	1 st January 2012, 48 months			
Project website		www.perseus-net.eu			
Deliverable Nr.	3.7	Deliverable Date	30/06/2015		
Work Package No		WP3			
Work Package Title	!	Upgrade-expand the existing observational systems and fill short term gaps			
Responsible		AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS			
Authors &		Katrin Schroeder (CNR), E. Heslop (SOCIB)			
Institutes Acronym	S	Participants: CNR, HCMR, IOLR, METU, OGS, SIO- RAS, MHI, OC-UCY, CNRS, IEO			
Status:		Final (F)	•		
		Draft (D)			
		Revised draft (RV)			
Dissemination leve	l:	Public (PU)	•		
		Restricted to other program participants (PP)			
		Restricted to a group specified by the consortium (RE)			
		Confidential, only for members of the consortium (CO)			

The research leading to these results has received funding from the European Community's Seventh Framework Programme ([FP7/2007-2013]) under grant agreement n° 287600 – project PERSEUS (Policy-oriented marine Environmental Research for the Southern European Seas)

The materials in this document reflect only the author's views and that the European Community is not liable for any use that may be made of the information contained therein.

This deliverable should be referenced as follows: Schroeder K., Heslop E., 2015. *Report on operation and data analysis from R/V monitoring for MSFD.* **PERSEUS Project**. ISBN 978-960-9798-12-9 To contact the authors:

Katrin Schroeder (katrin.schroeder@ismar.cnr.it)

CONTENTS

Exe	cutive	summary / Abstract	5
Scop	oe		5
		ODUCTION	
2.	Planr	ned and executed cruises during 2012-2015	8
3.	Preli	minary data analysis of the collected measurements	25
	3.1.	Western Mediterranean Sea	25
	3.2.	Adriatic and Ionian Seas	28
	3.3.	Levantine and Aegean Seas	31
	3.4.	Black Sea and Turkish Straits System	34
4.	Conc	lusions	37
APP	ENDE	X 1: QUESTIONNAIRES	38
APP	ENDE	X 2: ROSCOP Parameter Codes Used in the ICES-ROSCOP system	49
APP	ENDI	X 3: 5 DEGREE MARSDEN SQUARES (Central Point)	51

EXECUTIVE SUMMARY / ABSTRACT

This deliverable summarizes the research vessel observations that have been undertaken during the project lifetime. It provides a detailed description of what have been planned and actually executed by the partners within Subtask 3.2.3. in terms of oceanographic cruises during 2012-2015 in the Southern European Seas. A preliminary data analysis of collected CTD profiles is given for each subregion.

SCOPE

The overall scientific objectives of PERSEUS are to identify the interacting patterns of natural and human-driven pressures on the Mediterranean and Black Seas, to assess their impact on marine ecosystems and, using the objectives and principles of the Marine Strategy Framework Directive (MSFD) as a vehicle, to design an effective and innovative research governance framework based on sound scientific knowledge. The objectives of WP3 are to upgrade and expand the present observing capacity in the SES towards fulfillment of the scientific and society needs addressed by PERSEUS with emphasis on the characterization of present state, and to increase forecasting capabilities and provision of solid grounds for the implementation of MSFD.

1. INTRODUCTION

The Task 3.2 "Upgrade of existing observing components" considers the existing permanent routine observing systems and the scientific and society needs as well as the identified gaps, in order to carry out specific upgrades of the observing components, which will represent a valuable asset for the monitoring capacity of the SES in the future. PERSEUS has concentrated on upgrading and expanding new sensors for existing multiparametric platforms such as moorings and ARGO profilers, as well as on R/V repeated monitoring by increasing the spatial and temporal resolution in key areas for the needs of MSFD. Collected data will become available through the PERSEUS Database (WP9). The Subtask 3.2.3 entitled "R/V repeated monitoring; increase spatio-temporal resolution and support upgrade/ expand existing surveys" had the scope of filling in the gaps left by oceanographic cruise, identified in the first task of WP3, by organizing the observational work which was necessary to complement the existing systems.

CTD data collected in some specific sections has been submitted to the project database and oceanographic sections, across sub-basin and through straits, on an annual basis and monthly visits to sites has ensured the collection of data for a number of variables that will help WP1, WP2 and WP4 to make the assessment of the GES as well as in-lab calibration of the sensors.

Since the subtask is meant to provide a means to fill in existing gaps, in the following a brief summary of the findings of Subtask 3.1.2. is given. In the deliverable D3.1 we reported the research ship monitoring programmes over the years 2009-2011, i.e. before the start of PERSEUS. The aim of sub-task 3.1.2 was to review observational network based on research ship surveys over the last years all sub-basins of the Mediterranean and Black Sea. Gaps were identified and recommendations were given to improve the network as a whole and to meet the PERSEUS objectives. Particular attention was given to all the physical (T, S, currents) and biogeochemical (oxygen, chlorophyll, nutrients, alkalinity, etc.) parameters measured.

The Mediterranean and Black Seas have been sampled quite extensively by different countries during the past years. The overall picture allowed us to identify gaps. The single years are quite similar, denoting the tendency of performing repeated cruises of most of the partners.

The maps shown in Fig. 1 were carefully analyzed and gaps are identified and recommendations are given to improve the network as a whole and to meet the PERSEUS objectives. The following map, showing all stations surveyed by the above mentioned institutes between 2009 and 2011 (i.e. before the start of Perseus), highlights the presence of "blank areas" (denoted by the circles), and the importance for SES community to increase the horizontal extension of their surveys in certain areas.

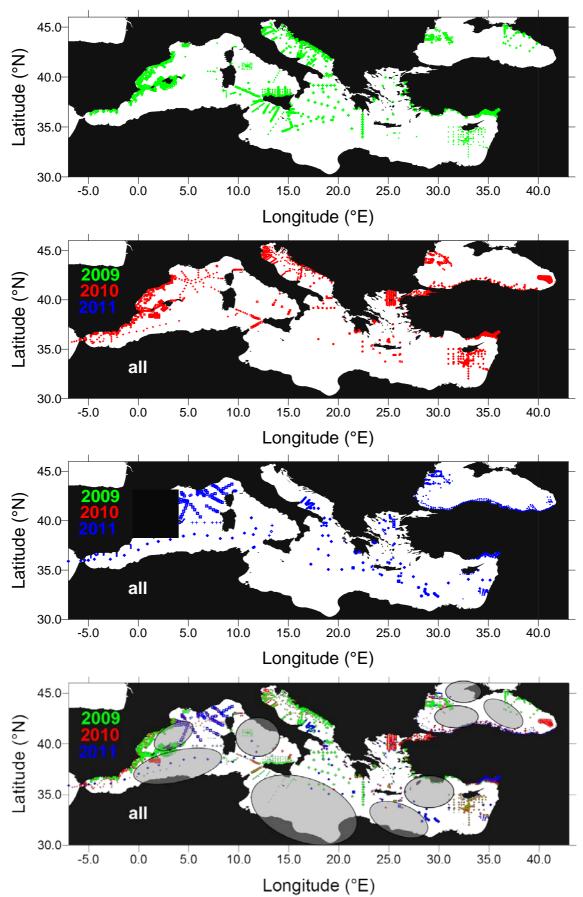


Figure 1. Station maps for single years (2009-2011) and combined station map 2009-2011 of all Institutes highlighting gaps in the data coverage.

2. Planned and executed cruises during 2012-2015

The aim of the S3.2.3 is to fill in the gaps of R/V repeated monitoring. The DoW identifies a number of key repeated sections and surveys. In order to establish a programming of the observational R/V based activity, partners were asked to fill in a questionnaire (detailed questionnaires can be found in the Appendix) about their R/V survey plans for the duration of the project. In the following we report the R/V cruises proposed in the DoW along with the actual plans of the involved partners, highlighting critical points.

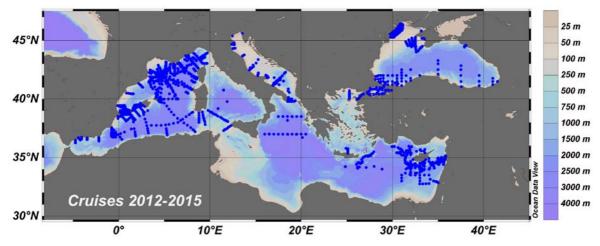


Figure 3. Combined Station map 2012-2015.

In the map in Figure 3 the stations of all cruises carried out by the partners in the period 2012-2015 are shown. Comparing Fig. 3 with Fig. 2 it appears that the gaps have been filled only partially. Substantial improvement is to be highlighted for the Algerian Basin, the north-western Mediterranean, the north-eastern Mediterranean as well as for the Black Sea. The southern Ionian Sea is still under-sampled (not sampled at all during Perseus), but this has to be mainly ascribed to political issues and ongoing conflicts in the southern shore countries. In general terms, the planning done in the DoW has been widely respected by the partners, even if a higher degree of adaptability of the cruise planning, after the outcomes of Task 3.1., would have been a wiser choice. More details on the single cruises are provided in the next paragraphs.

1) REPEATED CROSS SECTION IN THE NORTH-EASTERN BLACK SEA (PARTICIPANT: SIORAS)

<u>According to the DOW</u> "Activities, on a *monthly* time scale, will be concentrated on a transect offshore Gelendzhik, using a small R/V from the coast to the outer part of the continental slope at 1.500 m depth, 8-11 miles offshore: 7-9 CTD casts including biogeochemical data, including nutrients (PO4, Si, NO2, NO3, NH4), Chl-a, *dissolved oxygen and hydrogen sulphide*, pH, and alkalinity as well as spatial distribution of phytoplankton, mesozooplankton, and gelatinous macrozooplankton (including non-indigenous ctenophores), changes in species composition, abundance and biomass, will be carried out as well as profiles using the new Aqualog ocean profiler designed for offshore environmental monitoring, from 10-1000 m depth. These parameters can be used as qualitative descriptors for determination of environmental status (MSFD). This will upgrade the long-term monitoring (zooplankton, phytoplankton and hydro physical parameters) that was initiated in 2005."

<u>According to the questionnaire (see Appendix)</u>: SIORAS planned 6 one-day cruises per year (*bi-monthly*) starting in March 2013 and ending in October 2015 with the objective of contributing in the creation of time series of hydrophysical, hydrochemical and biological parameter measurements along the transect across the coastal zone off Gelendzhik (NE Black Sea), to study major circulation features of coastal dynamics and its influence on the ecosystem. These cruises are designated also as part of another (national) project ("Fundamental problems of ocean: physics, geology, biology, ecology". Coordinating body: Presidium of Russian Academy of Sciences). Parameters: CTD, nutrients (PO4, Si, NO2, NO3, NH4), pH, alkalinity, pelagic bacteria/micro-organisms, phytoplankton pigment and species composition, zooplankton abundance and species composition, *POC*, *PON*.

<u>Cruises actually carried out</u>: SIORAS carried out 6 cruises in 2013 and 6 cruises in 2014. The cruise list and station map is shown below. No activity is planned for 2015.

Period	Lat min	Lat max	Lon min	Lon max	R/V name	PI
Apr13	44.49	44.58	37.95	38.07	Ashamba	Arashkevich E.
May13	44.49	44.58	37.95	38.07	Ashamba	Arashkevich E.
Jun13	44.49	44.58	37.95	38.07	Ashamba	Arashkevich E.
Jul13	44.49	44.58	37.95	38.07	Ashamba	Arashkevich E.
Sep13	44.49	44.58	37.95	38.07	Ashamba	Arashkevich E.
Nov13	44.49	44.58	37.95	38.07	Ashamba	Arashkevich E.
Apr14	44.49	44.58	37.95	38.07	Ashamba	Arashkevich E.
May14	44.49	44.58	37.95	38.07	Ashamba	Arashkevich E.
Jun14	44.49	44.58	37.95	38.07	Ashamba	Arashkevich E.
Jul14	44.49	44.58	37.95	38.07	Ashamba	Arashkevich E.
Sep14	44.49	44.58	37.95	38.07	Ashamba	Arashkevich E.
Oct14	44.49	44.58	37.95	38.07	Ashamba	Arashkevich E.

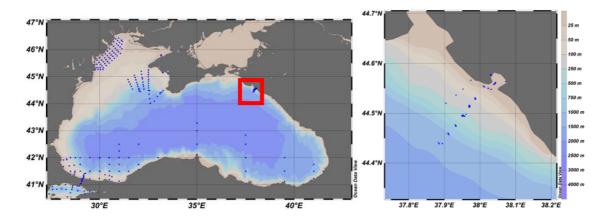
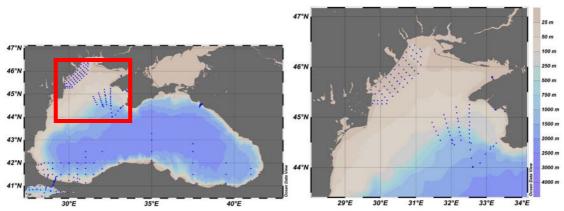


Figure 4. SIORAS cruises: (left) Black Sea station map where SIORAS working area is highlighted; (right) SIORAS repeated transect.

2) REPEATED CRUISES IN THE NORTH-WESTERN BLACK SEA (PARTICIPANT: MHI)

According to the DOW "Activities will focus on the NW Black Sea shelf, Danube paleo-canyon, in transects Cape "Chersonese- Bosporus", "Cape Chersonese-Danube",



and South Crimea shelf: CTD casts, current velocity profiles, bio- optical (by FRR fluorimeter), biogeochemical data, including nutrients (PO4, Si, NO2, NO3, NH4), Chl-a, dissolved oxygen and hydrogen sulphide, pH, alkalinity, and spatial distribution of phytoplankton. The pilot observations in transects "Sevastopol-Istanbul' will be provided by the ferry boats."

<u>According to the questionnaire (see Appendix)</u>: MHI planned to carry out 2 long cruises on board of R/V "Professor Vodyanitsky" and 3 cruises on small-size ship, between August and November 2013, with the main objective to contribute in measurements of optical, physical and biochemical parameters in the Western part of the Black Sea: monitoring the repeat transect "Chersones - Bosporus"; observations of transformation of Cold Intermediate Layer; study of seasonal evolution of Sevastopol anticyclonic eddy; hydrological observations in coastal zone near Dnestr and Danube estuaries and near Zmeinuy island with the aim to study of river water transformation in summer period; vertical profiling of currents by ADCP. Parameters. CTD, L-ADCP, oxygen, phosphate, nitrate. The location of the casts at the Black Sea was chosen, since permit to study of seasonal evolution of Sevastopol anticyclonic eddy and of river water transformation on the shelf and its impact on the shelf ecosystem.

<u>Cruises actually carried out</u>: Only one cruise in September 2013 was carried out. MHI is no longer a PERSEUS partner. The data collected have been correctly transmitted to the Perseus database. The cruise list and station map is shown below.

Period	Lat min	Lat max	Lon min	Lon max	R/V name	PI
					R/V "Professor	-
Sep13	44	46.5	29.5	33.6	Vodyanitsky"	-

Figure 5. MHI cruise: (left) Black Sea station map where MHI working area is highlighted; (right) MHI station map.

3) REPEATED CRUISES OR SECTIONS IN THE EASTERN MEDITERRANEAN SEA: A) SOUTH AEGEAN (PARTICIPANT: HCMR)

<u>According to the DOW</u> "In the South Aegean Sea (Cretan Sea) monthly cruises will be conducted by the HCMR to visit the E1- M3A mooring location. The biochemistry of this area has been studied approximately every 2 years since 1987. Since 2007, CTD casts of the entire water column at the E1-M3A location are done seasonally to annually through the POSEIDON project. From the beginning of 2010, additional monthly visits

are made to measure optical and physical (T, S) properties down to 150m depth and biochemical parameters (DO, chl-a, PO4, Si, NO2, NO3, NH4) down to 100m depth. An upgrade will be carried out to provide these parameters at NRT (<3 days) and to include bacteria and zooplankton biomass in delayed mode (6 months) as well as to make deeper CTD casts every month."

<u>According to the questionnaire (see Appendix)</u>: HCMR planned one-day monthly cruises starting in January 2013 and ending in June 2015 with the objective of contributing to the creation of a times series of optical, physical and biochemical parameters measurements using a Research vessel at the location of the POSEIDON-E1-M3A buoy. Parameters: CTD, nutrients (PO4, Si, NO2, NO3, NH4), DO, pelagic bacteria/micro-organisms, phytoplankton pigment, zooplankton abundance and size.

<u>Cruises actually carried out</u>: the HCMR R/V activities started in April 2013 (sampling was not possible from January to March), CTD casts and samples for all parameters declared in the DOW were taken except for O2. HCMR visited the E1-M3A location 5 times in 2013, 11 times in 2014 and 3 times in 2015. In addition HCMR carried out to longer cruises in 2013: PERSEUS0513 (May 2013) and PERSEUS1013 (October 2013), occupying respectively a north-south transect in the Southern Aegean Sea and in the Northern Aegean Sea. The cruise list and station map is shown below.

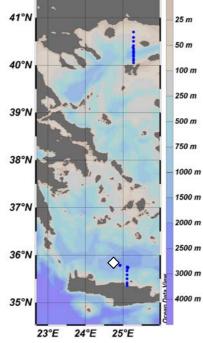


Figure 6. HCMR cruises (white diamond is the location of the fixed site E1-M3A).

Period	Lat min	Lat max	Lon min	Lon max	R/V name	PI
Apr13	35.35	35.76	25.09	25.16	IOLKOS/FILIA/AEGEAO	Frangoulis C.
May13	35.35	35.76	25.09	25.16	IOLKOS/FILIA/AEGEAO	Frangoulis C.
Oct13	35.35	35.76	25.09	25.16	IOLKOS/FILIA/AEGEAO	Frangoulis C.
Nov13	35.35	35.76	25.09	25.16	IOLKOS/FILIA/AEGEAO	Frangoulis C.

HCMR one-day monthly cruises at E1-M3A (white diamond in the map):

Dec13	35.35	35.76	25.09	25.16	IOLKOS/FILIA/AEGEAO	Frangoulis C.
Jan14	35.35	35.76	25.09	25.16	IOLKOS/FILIA/AEGEAO	Frangoulis C.
Feb14	35.35	35.76	25.09	25.16	IOLKOS/FILIA/AEGEAO	Frangoulis C.
Mar14	35.35	35.76	25.09	25.16	IOLKOS/FILIA/AEGEAO	Frangoulis C.
Apr14	35.35	35.76	25.09	25.16	IOLKOS/FILIA/AEGEAO	Frangoulis C.
May14	35.35	35.76	25.09	25.16	IOLKOS/FILIA/AEGEAO	Frangoulis C.
Jun14	35.35	35.76	25.09	25.16	IOLKOS/FILIA/AEGEAO	Frangoulis C.
Jul14	35.35	35.76	25.09	25.16	IOLKOS/FILIA/AEGEAO	Frangoulis C.
Sep14	35.35	35.76	25.09	25.16	IOLKOS/FILIA/AEGEAO	Frangoulis C.
Oct14	35.35	35.76	25.09	25.16	IOLKOS/FILIA/AEGEAO	Frangoulis C.
Nov14	35.35	35.76	25.09	25.16	IOLKOS/FILIA/AEGEAO	Frangoulis C.
Dec14	35.35	35.76	25.09	25.16	IOLKOS/FILIA/AEGEAO	Frangoulis C.
Mar15	35.35	35.76	25.09	25.16	IOLKOS/FILIA/AEGEAO	Frangoulis C.
Apr15	35.35	35.76	25.09	25.16	IOLKOS/FILIA/AEGEAO	Frangoulis C.
May15	35.35	35.76	25.09	25.16	IOLKOS/FILIA/AEGEAO	Frangoulis C.

PERSEUS0513 and PERSEUS1013 cruises:

Period	Lat min	Lat max	Lon min	Lon max	R/V name	PI/Cruise name
May13	35	36	25.09	25.09	-	PERSEUS0513
Oct13	40	41	25.2	25.2	-	PERSEUS1013

4) REPEATED CRUISES OR SECTIONS IN THE EASTERN MEDITERRANEAN SEA: B) SOUTH-EAST LEVANTINE (PARTICIPANT: IOLR)

<u>According to the DOW</u> "In the south-east Levantine basin, on a section off Haifa, *seasonal* observations will be carried out by the IOLR using R/V Shikmona. The section includes 6 CTD stations starting in Haifa Bay (the area under intensive anthropogenic pressure) and ending in open sea area of 1.600 m depth, 45 miles from the coast. High resolution (1m) profiles will be taken at each station measuring temperature, salinity, oxygen, fluorescence (chlorophyll), and beam attenuation. In addition, water will be sampled in water mass cores and particular points, and analysed for oxygen, nutrients (PO4, SiOH4, NO2, NO3, *NH4*), *Chl-a*. Regular observations on the Haifa section started in 2002. The H05 station (1400m), where the relative regular observations started in 1979, was appointed a WOCE type observation point in the Levantine basin by the SESAME project. Observations on the Haifa Section are essential for *calibration of gliders and ARGO floats*, as well as for long term monitoring of the Levantine surface water salinity, which defines the intensity of intermediate water formation in the Levantine and deep water formation in the Aegean."

According to the questionnaire (see Appendix): IOLR planned one-day *half-year* cruises starting in March 2013 and ending in September 2015 with the objective of investigating long term changes of the seawater physical and chemical parameters in the South Eastern Levantine, *and validation of a hydrodynamic model of shelf circulation*. These cruises are designated also as part of another (institutional) project ("Haifa Section". Coordinating body: IOLR). Parameters: CTD, oxygen, phosphate, *total – P*, nitrate, nitrite, *total – N*, silicate, *alkalinity*, *pH*.

<u>Cruises actually carried out</u>: IOLR carried out 2 cruises in 2013, 2 in 2014, and up tp now 1 in 2015 (cruises named from "Haifa Section 29" to "Haifa Section 33"). The cruise list and station map is shown below.

Period	Lat min	Lat max	Lon min	Lon max	R/V name	PI
Mar13	32.8	33.2	34.1	34.93	Shikmona	Isaac Gertman
Dec13	32.8	33.2	34.1	34.93	Shikmona	Isaac Gertman
Aug14	32.8	33.2	34.1	34.93	Shikmona	Isaac Gertman
Nov14	32.8	33.2	34.1	34.93	Shikmona	Isaac Gertman
Mar15	32.8	33.2	34.1	34.93	Shikmona	Isaac Gertman

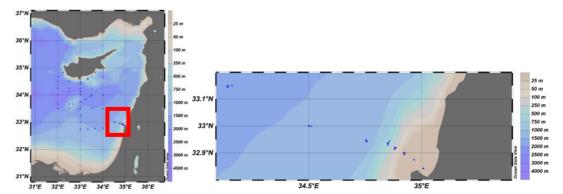


Figure 7. IOLR cruises: (left) Eastern Levantine station map where IOLR working area is highlighted; (right) IOLR repeated transect.

5) REPEATED CRUISES OR SECTIONS IN THE EASTERN MEDITERRANEAN SEA: C) CYPRUS (PARTICIPANT: OC-UCY)

<u>According to the DOW</u> "OC-UCY will carry out multidisciplinary (physical and biochemical) N-S monitoring along 33 °E, from Limassol, Cyprus down to the south, to 33°N, onboard multi-purposed vessels. Along this transect of 90 nm, the OC-UCY will carry out sampling at 11 stations, from surface down to a maximum depth of 1500 meters, annually. This transect has been well-monitored over the last 15 years by OC-UCY, during the CYBO cruises. This transect monitoring will be combined with the CYBO cruises in the broader SE Levantine Basin. Moreover, along the same transect, additional physical data will be collected onboard VOS, from Limassol to Port Said. This transect is well-monitored by the Cyprus VOS cruises in the framework of MFSTEP and MFSPP projects. Along this VOS transect of 180 nm length, the OC-UCY will carry out sampling at 18 stations down to a maximum depth of 700m, *3-4 times per year*, depending on the VOS availability. The VOS cruises strategy will be combined with the CPR field sampling."

<u>According to the questionnaire (see Appendix)</u>: OC-UCY planned *bi-monthly* (one day) and annual (3-10 days) cruises starting in April 2012 and ending in December 2013 with the objective of obtaining a bi-monthly times series of physical and biological parameters measurements of a coastal domain with up to 10 stations in the Limassol Bay, Levantine Basin (the MEDZOO daily cruises); of collecting data for the evaluation of the benthic fish stock abundance in the waters of the Republic of Cyprus for the Period 2011-2013 (the annual MEDITS with 10 days duration); of collecting data along 33°E in order to monitor the transport of the AW, of the Cyprus eddy and of the MMJ (the annual CYBO with 3 days duration). These cruises are designated also as part of other projects: international "MEDZOO" (Coordinating body: CIESM), national "MEDITS 2011-2013" (Coordinating body: AP MARINE ENVIRONMENTAL CONSULTANCY LTD), national "CYBO" (Coordinating body: OC-UCY). Parameters: CTD, Zooplankton abundance and size.

<u>Cruises actually carried out:</u> Some of the MedZOO bi-monthly cruises in Limassol Bay (April 2012, June 2012), the MEDITS cruises in coastal zone in 2012 (June 2012–also CTD and zooplankton around Cyprus), the CYBO cruise along 33°E (2012 had 2 reduced versions, both of which had stations on the line, October 2012, December 2012), the Pelagia cruise (deep casts CTD in a small area, October 2012), the CYBO-OCB cruises (open sea CTD near a moored platform, and some stations along the 33°E line, September 2012, December 2012), the Basilikos cruise (CTD ADCP near the coast just east of Limassol, August 2012). CYBO cruises were reduced because of budget cuts (10/11 stations were done in October 2012, and only 5/11 in December 2012). MEDITS did take place in 2013, Zooplankton cruises missing after June 2012 and in 2013. Not all the data of the above mentioned cruises could be retrieved from the Perseus database and Seadatanet. In the map and in the cruise list only those cruise are present for which the data could have actually been located.

Period	Lat min	Lat max	Lon min	Lon max	R/V name	PI
Oct12	33.5	35	32	34	Shikmona	G. Zodiatis/CYBO25a
Dec12	33.5	35	32	34	Shikmona	G. Zodiatis/CYBO25b
Feb13	33.67	33.67	31.42	31.42	Shikmona	D. Hayes/CYOCB4
May13	33	33.8	31	32	Shikmona	D. Hayes/CYOCB5
Dec13	32.75	34.5	33	35	Shikmona	G. Zodiatis/CYBO26

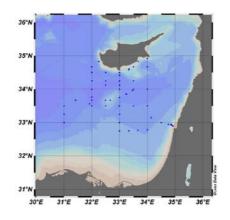


Figure 8. OC-UCY cruises.

6) REPEATED CRUISES OR SECTIONS IN THE EASTERN MEDITERRANEAN SEA: D) sections /cruises in the Turkish Straits System (Participant: METU)

<u>According to the DOW</u> "Mediterranean-Black Sea exchanges: monitoring at the Turkish Straits System (TSS), mainly focusing on the Bosporus Strait will make use of (1) existing nutrient and plankton samples and periodically collection of new nutrients (phosphate, silicate and nitrate), chlorophyll and plankton samples at predetermined intervals, (2) Analyzing air filters (over 2000 samples) already collected at coastal locations (Erdemli, Sinop, Gokceada, Istanbul) with some additional samples to be collected during the cruises for assessment of atmospheric deposition. "

<u>According to the questionnaire (see Appendix)</u>: no questionnaire received, but three cruise sheets received recently. For details see below.

<u>Cruises actually carried out</u>: METU carried out three main cruises, MAREX (June 2013), BSEX (July 2013) and BSEX2 (November 2014). The cruise list and station maps are shown below.

Period	Lat min	Lat max	Lon min	Lon max	R/V name	PI/Cruise name
Jun13	40	41.3	26.1	29.9	Bilim-2	S. Tugrul/MAREX
Jul13	41.1	43.3	28.1	41.5	Bilim-2	B. Salihoglu/BSEX
Nov14	40.8	42.2	28.1	31	Bilim-2	H. Örek/BSEX2

1. MAREX – Marmara Sea Experiment cruise (also WP1.3) in the Turkish Straits System: Stations are selected on coastal and offshore regions of the Marmara Sea and along the two straits to monitor two-layered flows in the straits. The main aim of this cruise was to understand pressures and impacts on the Marmara ecosystem and major processes dominating the two-layer ecosystem in the TSS. During the cruise, samples were collected for the physical, biological and chemical parameters at pre-defined stations. Samples, taken by rosette system and WP2 nets or sediment samplers (Grab) processed on board and preserved for the laboratory analysis in the institute. Parameters: CTD, PAR, Fluorescence, Oxygen, phytoplankton, cyanobacteria and heterotrophic bacteria, primary production, pigment, Zooplankton, jellyfish, Ichtyoplankton, NO3, NO2, PO4, NH4, TP, POM, POC, PON, Si, DIP, TIN, DOW, pH, Chl-a, TSS, BOD5, contaminants in sediment, Cesium sampling, Atmospheric deposition.

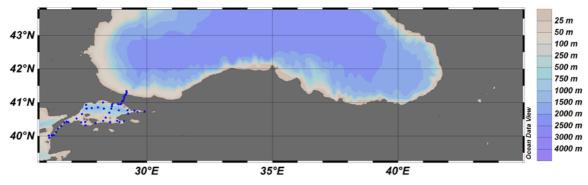


Figure 9. METU MAREX cruise.

2. BSEX – Black Sea Experiment cruise (also WP1.3) in the Southern part of the Black Sea: Cruise was carried out during the summer of 2013 to measure the level of nutrients and oxygen and the ratios (silica, nitrogen and phosphorus) and distribution of phytoplankton, zooplankton and impact of gelatinous zooplankton is observed. Parameters: CTD, O2, nutrients, pH, chl, PAR, TOC, TN, bacterial biomass/production, PP, Phytoplankton, Mesozooplankton, Gelatinous organisms, Eggs and larvae, Fish acoustics, Food web PP vs fish biomass, Atm deposition, Contaminants, contaminants in fish (heavy metal), Box corer/corer sample.

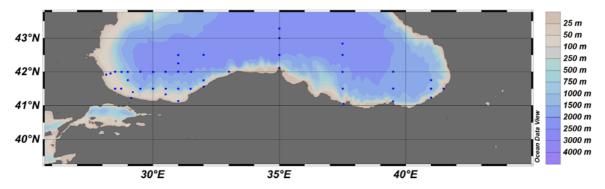
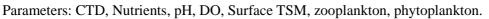



Figure 10. METU BSEX cruise.

3. BSEX2 – Black Sea Experiment cruise (also WP1.3) in the South-western ern part of the Black Sea:

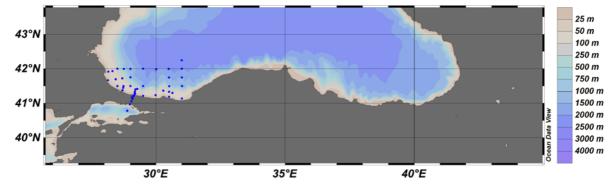


Figure 11. METU BSEX2 cruise.

7.1) REPEATED CRUISES OR SECTIONS IN THE WESTERN MEDITERRANEAN SEA: A) RADMED CROSS SECTIONS (PARTICIPANT: IEO)

<u>According to the DOW</u> "The RADMED cross sections, covering different sections in the Alboran Sea from the shelf to the deep sea (offshore slope) along the Spanish coast (reaching Barcelona and including the Balearic channels) have been historically carried out by the IEO (from 2007, but in some sections, since 1995): they will be continued and expanded including biogeochemical data to better establish the interactions between Atlantic and Mediterranean Waters and the North/South Exchanges in the western Mediterranean."

<u>According to the questionnaire (see Appendix)</u>: IEO planned 20-days seasonal cruises starting in March 2012 and ending in June 2015 with the objective of a space-time monitoring of physical variables, chemical, biological meaningful and *distribution of phytoplankton and zooplankton communities* in profiles located at special points along the Spanish Mediterranean coast. For their achievement should be made an oceanographic sampling on a four month basis, covering transects perpendicular to the coast at special points in the Spanish Mediterranean. These cruises are designated also as part of another institutional project ("RADMED-DOS". Coordinating body: IEO). Parameters: CTD, phosphate, nitrate, nitrite, silicate, *phytoplankton pigments, zooplankton*.

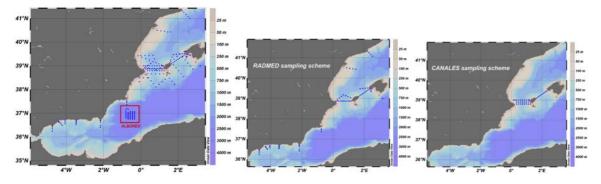
<u>Cruises actually carried out</u>: In 2012 IEO had scheduled three 20-days seasonal cruises. The first RADMED-0312 cruise took place between days 24/03/12 to 13/04/12, the following two at June and October could not be carried out by technical problems with the ships. In 2013 IEO has carried out 5 cruises, 6 in 2014 and 2 in 2015 ("Canales Scheme" and "Radmed Scheme", see figures below). Parameters: CTD, nutrients (phosphate, silicate, nitrite and nitrate), phytoplankton pigments and zooplankton are measured during these cruises. In addition IEO participated to the ALBOREX experiment in May 2014. The cruise list and station map is shown below.

Period	Lat min	Lat max	Lon min	Lon max	R/V name	PI/Cruise name
Mar12	36.25	41.32	-2.2	4.6	Emma Bardán	J. Lopez-Jurado/RADMED0312
Mar13	36.25	41.32	-4.75	4.58	SOCIB	J. Lopez-Jurado/RADMED0313
Jun13	38.8	41.3	0.1	4.6	SOCIB	J. Lopez-Jurado/RADMED0613
Nov13	36.25	41.32	-4.75	4.58	F.P. NAVARRO	J. Lopez-Jurado/RADMED1113
Feb14	36.25	41.32	-4.75	4.58	F.P. NAVARRO	J. Lopez-Jurado/RADMED0214
Jun14	38.3	39.5	-0.1	2.4	SOCIB	J. Lopez-Jurado/RADMED0613
Nov14	36.25	41.32	-4.75	4.58	F.P. NAVARRO	J. Lopez-Jurado/RADMED1114

7.2) REPEATED CRUISES OR SECTIONS IN THE WESTERN MEDITERRANEAN SEA: A) CANALES SECTIONS (PARTICIPANT: SOCIB)

In addition to the RADMED section, SOCIB is also involved in subtask 3.2.3 with the repeated "Canales" monitoring program. The SOCIB Canales ship missions are undertaken in the Balearic Channels, namely the Ibiza and Mallorca Channels. These narrow and relatively shallow channels are important restriction points in the basin scale circulation of the Mediterranean Sea, particularly the Ibiza Channel (IC). The Ibiza Channel is an important 'choke' point, governing an inter-sub basin exchange of different water mass that is known to affect local ecosystems in a region of high biodiversity. The SOCIB 'Canales' ship missions aim to monitor transects across both the IC and MC 4 times a year (seasonally), approximately perpendicular to the main current flows. In order to monitor the inter sub-basin exchange of water mass and support the fast repeat glider endurance line missions (see PERSEUS Deliverable D3.6 for details), also undertaken by SOCIB in the IC as part of the multi-platform approach to ocean monitoring. The R/V SOCIB, a fast catamaran purpose built for regional oceanographic missions (see www.socib.es), is used for the SOCIB 'Canales' ship missions. Generally one transect of the MC is undertaken (10 stations) and 2 transects

able Nr. 3.7


PERSEUS Deliverable Nr. 3.7

of the IC, one coincident with the glider endurance line transect at approx. 39 °N and the second 15 km to the south (10 and 8 stations respectively). At each station, CTD, oxygen, fluorescence, and turbidity are measured, and water samples for oxygen and salinity. High accuracy, vessel mounted ADCP monitoring is also undertaken (additional ADCP transects can be captured over night) as well as meteorological parameters and surface salinity and temperature from a thermosalinograph. The ship missions are coordinated with the SOCIB glider endurance line monitoring missions and provide additional information on the flows in the east of the IC, an important means of correcting the glider CTD against in-situ samples, and an important cross-check for the geostrophic velocity calculations that give a measure of water transport through the channels.

Cruises actually carried out: Commencing in 2013, SOCIB has now undertaken 5 SOCIB 'Canales' Ship missions, 1 in 2013, 3 in 2014 and 1 in 2015, with 2 more planned. The SOCIB 'Canales' ship transects help support the IEO RADMED cruise time series, as they are undertaken in similar locations. In addition SOCIB supported the PERSEUS WP3 Task 3.4 multi-platform Experiment, ALBOREX, which was undertaken in May 2014. The ALBOREX Experiment was a multi-platform, synoptic and intensive experiment, lead by IMEDEA (CSIC-UIB) for PERSEUS, with strong support from SOCIB, OGS, CNR, WHOI and McGill University. Sampling was undertaken at an intense front where Atlantic and Mediterranean waters meet in the Eastern Alboran Sea, to the south of the IC. The experiment took place over 8 days and included a range of oceanographic platforms, sampling concurrently in order to more effectively capture the intense but transient motion associated with mesoscale and submesoscale features along the intense front, including submesoscale vertical motion. During the experiment 25 drifters, 2 gliders, 3 Argo floats were deployed, and the R/V SOCIB catamaran sampled 66 stations. The CTD data from all the SOCIB ship missions reported here are available in Coriolis.

Period	Lat	Lat	Lon	Lon	R/V name	PI/Cruise name
I erioù	min	max	min	max	K/ v fiante	
Dec13	38.8	39.5	0	2.4	SOCIB	J. Tintorè/ SOCIB_Canales_Dec2013
Feb14	38.8	39.5	0	2.4	SOCIB	J. Tintore/ SOCIB_Canales_Feb2014
May14	36.5	37.5	-1.5	0	SOCIB	A.Pascual/PERSEUS_EPR_ALBOREX_May2014
May14	38.8	39.5	0	2.4	SOCIB	J. Tintorè/ SOCIB_Canales_May2014
Nov14	38.8	39.5	0	2.4	SOCIB	J. Tintorè/ SOCIB_Canales_Nov2014
Apr15	38.8	39.5	0	2.4	SOCIB	J. Tintore/ SOCIB_Canales_Apr2015
May15	38.1	39.5	0.2	2.8	SOCIB	J. Tintorè/ SOCIB-SHEBEX-MAY2015

Figure 12. IEO+SOCIB cruise map (left), and typical RADMED (centre) and CANALES (right) sampling schemes.

8) REPEATED CRUISES OR SECTIONS IN THE WESTERN MEDITERRANEAN SEA: B) MOOSE MONTHLY CRUISES (PARTICIPANT: CNRS)

<u>According to the DOW</u> "The MOOSE monthly cruises along the French coast, off Banyuls, Marseille and Villefranche, again from the shelf to deep sea environment (<50km offshore). Full depth profiles. Automatic collection of T, S, O2, Fluorescence Chl-a, Turbidity. Water samples for oxygen, pigments, salinity, cytometry, nutrients and DIC."

According to the questionnaire (see Appendix): CNRS planned one-day monthly cruises starting in January 2012 and ending in December 2015 with the objective of observing the long-term evolution of the NW Mediterranean Sea in the context of the climate change and anthropogenic pressure (over > 10 yrs) in order to be able to detect and identify long-term environmental trend and anomalies of the marine ecosystem. Presently, MOOSE is combining eulerian observatories, autonomous mobile platforms (profilers, gliders) and research vessels. The eulerian observation is organized in three mooring sites in which a ship survey is performed on a monthly basis (DYFAMED), in the Ligurian Sea for atmospheric and marine flux transfer to the surface and deep waters (since 1988, OOV, Eurosites, MOOSE-DYF); ANTARES in the north western current offshore from Toulon for hydrodynamic and organic matter remineralization in deep water, MOOSE-ANT; MOLA in the western part of the Gulf of Lions off the marine station in Banyuls, devoted to the bacterial diversity in relation to the variability of the hydrology, MOOSE-MOL). Parameters: CTD, oxygen, fluorescence (chlorophyll), and beam attenuation, nutrients, alkalinity, dissolved inorganic carbon, pelagic bacteria/micro-organisms, phytoplankton pigment.

<u>Cruises actually carried out</u>: in 2012 CNRS carried out monthly cruises along a transect from the shelf, in front of Nice, to the deep sea environment, with the last station offshore being identified with the historical DYFAMED (approx. 43.4 °N, 7.9°E, white diamond in the station map) station. No monthly data of the whole transect between 2013 and 2015 have been located, while DYFAMED only has been repeated approximately on a monthly basis during the whole period. All data have been retrieved from Seadatanet. The cruise list and station map is shown below.

Period	Lat min	Lat max	Lon min	Lon max	R/V name	PI/Cruise name
2012, monthly	43.3	43.7	7.3	7.9	Téthys	L.Coppola/Boussol +Dyfamed
2013, monthly (excl. Jan, Feb, Jun)	43.4	43.4	7.9	7.9	Téthys	L. Coppola/ Dyfamed
2014, monthly (excl. Jan, Feb, Jul, Oct)	43.4	43.4	7.9	7.9	Téthys	L. Coppola/ Dyfamed

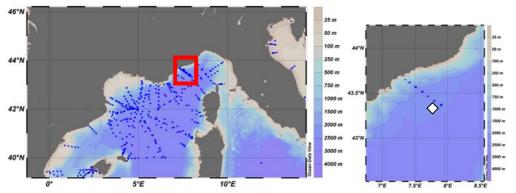


Figure 13. CNRS cruises: (left) North-western Mediterranean station map where MOOSE monthly cruises working area is highlighted; (right) CNRS monthly repeated transect and DYFAMED station (white diamond).

9) REPEATED CRUISES OR SECTIONS IN THE WESTERN MEDITERRANEAN SEA: C) MEDOCC SERIES (PARTICIPANT: CNR)

<u>According to the DOW</u> "The MEDOCC series (carried out by the CNR, at the western basin scale), western basin-scale surveys through hydrographic multidisciplinary sections, closing sub-volumes of the basin, following a box-model approach to allow budget computations of mass, salt, heat and biogeochemical properties. The Ligurian section crosses the DYFAMED position. The Corsica and Sicily sections correspond to the CORSICA, C01 and C02 moorings, respectively. This survey has already been carried out in 2005, 2006, 2007 and 2008. During PERSEUS it will be effected one time and coordinated with the annual MOOSE cruise."

<u>According to the questionnaire (see Appendix)</u>: CNR planned one 25 days long cruise for April-May 2014 with the objective of continuing the MEDOCC series, i.e. western basin-scale surveys through hydrographic multidisciplinary sections, closing subvolumes of the basin, following a box-model approach to allow budget computations of mass, salt, heat and biogeochemical properties. The Ligurian section crosses the DYFAMED position. Parameters: CTD, oxygen, phosphate, nitrate, silicate.

<u>Cruises actually carried out</u>: due to severe weather conditions, only a subset of the planned stations could be done in spring 2014 (see map, left). CNR will integrate the missing information in subsequent cruises planned for August 2015 in the framework of other European projects (planned station map is also shown, right). Those data will be transferred to the Perseus database as well as soon as available.

Period	Lat min	Lat max	Lon min	Lon max	R/V name	PI/Cruise name
Mar14	37.3	43	8.8	12.3	Urania	K. Schroeder/Medocc14

Figure 14. CNR cruise in 2014 (left), and approved cruise plan for August 2015 (right).

10) REPEATED CRUISES OR SECTIONS IN THE WESTERN MEDITERRANEAN SEA: D) MOOSE ANNUAL CRUISES (PARTICIPANT: CNRS)

<u>According to the DOW</u> "Finally, an annual MOOSE cruise (May-June) with large scale sections (20nm between stations) across the whole sub-basin (France-Minorca-Sardinia-Corsica) for the long-term monitoring of the water masses (physical and biogeochemical characteristics, same parameters as monthly cruises). Data will be transferred to data centres in NRT (<24h) when possible and in delayed mode (6 months)."

<u>According to the questionnaire (see Appendix)</u>: CNRS planned annual cruises starting in January 2012 and ending in December 2015 with the objective of observing the longterm evolution of the NW Mediterranean Sea in the context of the climate change and anthropogenic pressure (over > 10 yrs) in order to be able to detect and identify longterm environmental trend and anomalies of the marine ecosystem. Integrated and multiscale observation networks must include both high frequency monitoring and near realtime measurements capabilities in order to precisely document the broad spectrum of temporal and spatial scales involved and to rely it on the main circulation features already identified (basin scale gyres, eddies, biogeochemical provinces). Parameters: CTD, oxygen, fluorescence (chlorophyll), and beam attenuation, nutrients, alkalinity, dissolved inorganic carbon, pelagic bacteria/micro-organisms, phytoplankton pigment. Cruises actually carried out: all MOOSE operations have started and actually on-going.

<u>Cruises actually carried out</u>: all MOOSE operations have started and actually on-going. The annual cruises have been carried out in July 2012, June 2013 and July 2014. The next one is scheduled for July 2015. All data have been retrieved from Seadatanet. The cruise list and station map is shown below.

Period	Lat min	Lat max	Lon min	Lon max	R/V name	PI/Cruise name
Jul12	39.8	43.5	3.1	8.6	LeSuroit	P. Testor/MOOSE-GE12
Jun13	39.8	43.5	3.1	8.6	LeSuroit	P. Testor/MOOSE-GE13
Jul14	39.8	43.5	3.1	8.6	LeSuroit	P. Testor/MOOSE-GE14

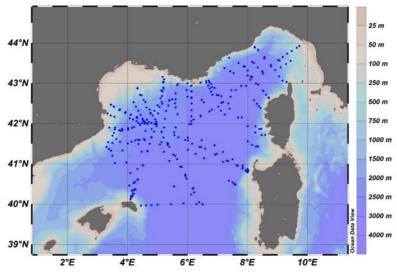


Figure 15. CNRS annual MOOSE cruises.

11) OTHER RELEVANT CRUISES LOCATED IN THE PERSEUS DATABASE AND SEADATANET DATABASE

<u>OGS-ADREX</u>: Within WP1.3, OGS participated to ADREX (Adriatic and Ionian Sea Experiment), and carried out three cruises in the Adriatic Sea. The cruise had the focus on the investigation of the role of the Adriatic-Ionian system in transmitting the humanmade pressures in the eastern Mediterranean through the Adriatic Dense Water formation and spreading. Parameters: CTD, carbonate system, oxygen, nutrients, DOM, POM, CO2 uptake, biomass production and CO2 release, plankton productivity, biodiversity and carbon distribution in the trophic chain. The cruise list and station map is shown below.

Period	Lat min	Lat max	Lon min	Lon max	R/V name	PI/Cruise name
Mar13	41.2	42.25	17.11	18.5	OGS Explora	V. Cardin/ADREX13
Feb14	37	43.37	14.4	20.5	OGS Explora	G. Civitarese/ADREX14
Oct14	39.99	45.61	12.36	18.9	OGS Explora	V. Kovacevic/ADREX14sed

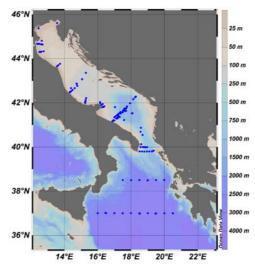
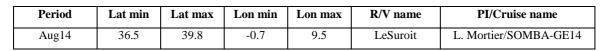



Figure 16. OGS ADREX cruises.

<u>CNRS-SOMBA-GE14</u>: CNRS organized a cruise in the Algerian Sea in August-September 2014. It is not part of Perseus but it covers an important part of the Mediterranean Sea, that has been identified in Subtask 3.1.3 as having a data gap. This is the main reason of its inclusion here. The main objective of SOMBA-GE is to start the companion time series of MOOSE for the

"Essential Oceanic Variables" in the Algerian Basin, with an extension and spatial scales coherent with the general circulation. As a matter of fact, although the Algerian Basin features (Algerian Current, anticyclonic eddies at surface, cyclonic gyres at depth, see below) are known to be essential for the spreading of the Mediterranean Atlantic Waters in the whole Mediterranean, and for the trophic regime of the Algerian Basin, only a few oceanographic cruises have been conducted in this region over the past decades and none of them have considered the area as an unique dynamical entity. Parameters: CTD, LADCP, ADCP, NO3, NO2, SiOH4, PO4, HPLC pigments analysis, dissolved inorganic carbon, dissolved oxygen (Winkler protocol) and pH. The cruise list and station map is shown below.

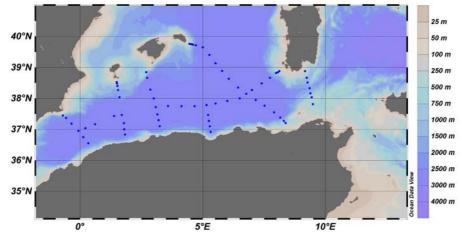


Figure 17. CNRS SOMBA-GE14 cruise.

<u>SHODB Turkish cruises:</u> The Department of Navigation and Hydrography and Oceanography (Turkish Navy) made also two extensive cruises programs available to international databases: SHODB12 cruises (monthly cruises at an irregular grid) and SHODB13 (almost monthly cruises at an irregular grid), for which not much metadata could have been located (they are not part of Perseus), but that cover an area for which in Task 3.1. a data gap has been highlighted, the north-eastern Levantine basin. The cruise station map is shown below.

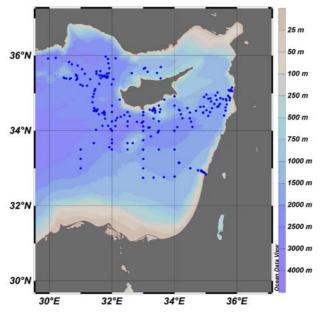


Figure 18. SHODB monthly cruises in 2012 and 2013.

3. Preliminary data analysis of the collected measurements

In this section some comments and plots on the collected data (mainly CTD data, leaving the description of other variables to the use and exploitation of the partners), to define the hydrological context of the working areas in the different subbasins. Some cruises were carried out "una tantum", while others are part of monthly or seasonal repetition programs. In the former case, transects of relevant properties in representative areas will be shown, while in the latter case a time series of properties will be constructed, evidencing the importance of sustained repeated hydrography. Contrary to the previous paragraph, here the description will follow a geographical criterion.

Hence, the content of the section has been structured over four sections:

- 1. Western Mediterranean
- 2. Adriatic and Ionian Seas
- 3. Levantine and Aegean Seas
- 4. Black Sea and Turkish Straits Systems

3.1. Western Mediterranean Sea

3.1.1. General characteristics

The Western Mediterranean (WMED) is directly connected to the Atlantic Ocean via the Strait of Gibraltar and is subdivided in two sub-basins, the Algero-Provencal basin and the Tyrrhenian Sea. Both areas may be further subdivided but mostly for geographical position, morphology at depth and/or dynamical features, without having sills or ridges separating them. Large eddies, especially those associated with the Atlantic Water flowing as a strong current (Algerian current) along the southern part of the basin and widespread mesoscale activity, with a typical smaller scale than in the open ocean, are another feature of the circulation. The continental shelf is generally very narrow with a few exceptions, e.g., the Gulf of Lion.

The Algero-Provencal Basin is characterized by a North-South gradient in primary production, due to the presence of a large scale cyclonic circulation in the North, the transition between the northern area and the southern part whose dynamics are strongly affected by the Atlantic Water. Overall the open WMED is oligotrophic, with the exceptions of Alboran and the Gulf of Lion, as well as some narrow coastal areas.

One of the key processes of the WMED is the deep water formation within the basin, with an impact on the transfer of matter and tracers at depth. This process can bring a large amount of carbon to depth.

3.1.2. Hydrographic description at selected transects (2012-2015)

In this area the most intense R/V activities are the repeated MOOSE, Canales and RADMED cruises. In addition there are one-time transects collected during Medocc14 (CNR), ALBOREX (IEO) and SOMBA-GE14 (CNRS).

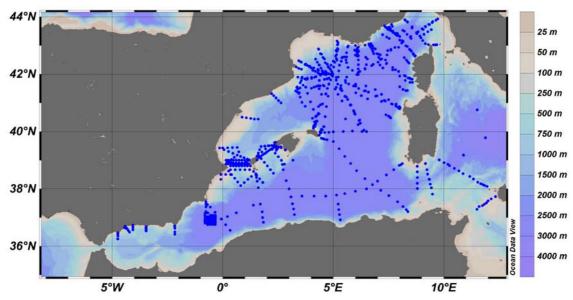


Figure 19. Cruises in the WMED during Perseus.

The TS diagram of the whole area is a very informative way to display water masses. Figure 20 shows all data (left) as well as a zoom on intermediate a deep layers (right). Pressure is colour-coded.

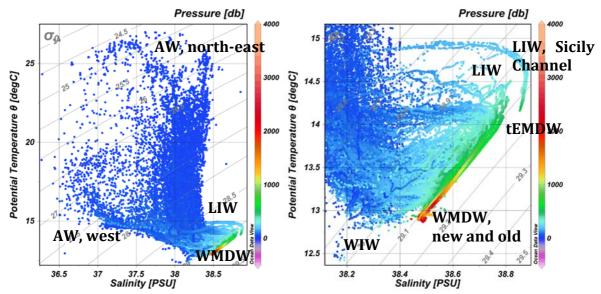


Figure 20. TS diagrams of the whole water column (left) and in the intermediate-deep layer (right) in the WMED during 2012-2015. (AW=Atlantic Water; LIW=Levantine Intermediate Water; WMDW=Western Mediterranean Deep Water; tEMDW=transitional Eastern Mediterranean Deep Water; WIW=Western Intermediate Water).

CNRS monthly cruises at DYFAMED provide a nice time series of deep vertical profiles. In figure 20 salinity is shown, which seems to increase with time in the intermediate layer.

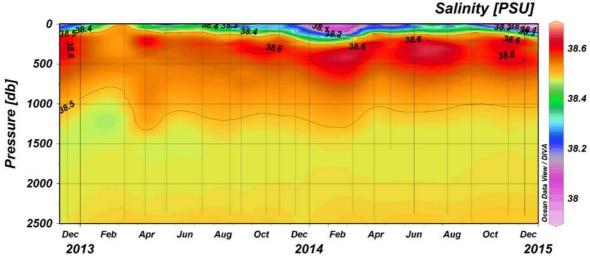
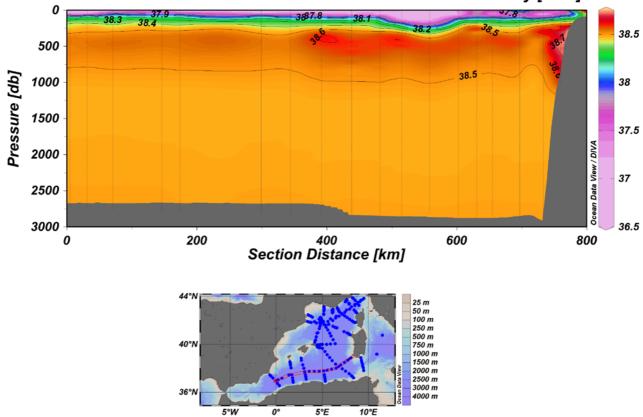



Figure 21. Hovmöller diagram of salinity at the Dyfamed station in the Ligurian Sea.

The SOMBA cruise in the Algerian subbasin provides us with the longest transect in the period, so salinity distribution along it is shown in Fig. 21, evidencing the decreasing salinity of the Levantine Intermediate Water from east to west, due to dilution with the overlying fresher Atlantic Water.

Salinity [PSU]

Figure 22. Salinity section along the Algerian transect.

IEO and SOCIB carried out seasonal cruises, and in Figure 23 we show the temporal evolution of temperature in one of the monitored channels (between Mallorca and

Ibiza), where the appearance and disappearance of the mixed layer is appreciable. Also the temperature of deeper waters seems to show some seasonal dependence.

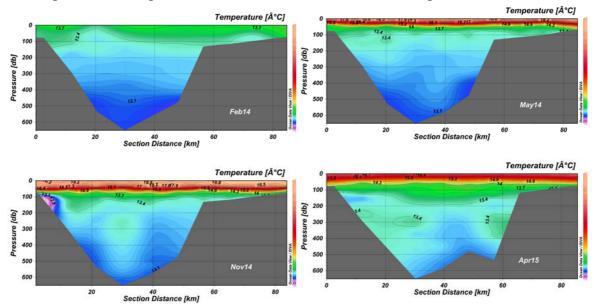


Figure 23. Seasonal evolution of temperature in the Mallorca-Ibiza Channel.

3.2. **Adriatic and Ionian Seas**

3.2.1. General characteristics

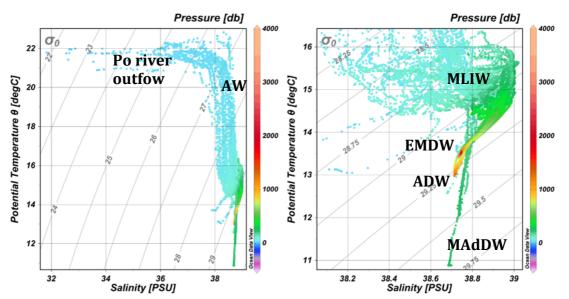
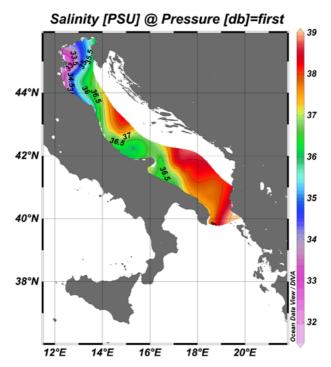
The Adriatic Sea is a semi-closed basin that stretches from the northern continental shelf (35 m of averaged depth) to the southern Adriatic Pit (1220 m of depth). The Adriatic is connected to the Ionian Sea through the Otranto Strait. The North Ionian Sea is featured by lower coastal development and human population than other areas of the Mediterranean Sea. On the other hand, the Adriatic Sea is affected by a significant runoff of continental waters and, because of its small surface and volume and morphology, is expected to be in the future one of the most impacted regions of the Mediterranean by the combined effects of climate changes and human activities. The Adriatic Sea plays an important role also for the large scale dynamics of the Eastern Mediterranean, being the site of formation of the dense water, which is the dominant component of the Eastern Mediterranean Deep Water. Recent analyses have also showed that the water exchange with the Ionian sea displays a Bimodal Oscillation which has a relevant effect on biogeochemical transports and therefore on the functioning of the ecosystem.

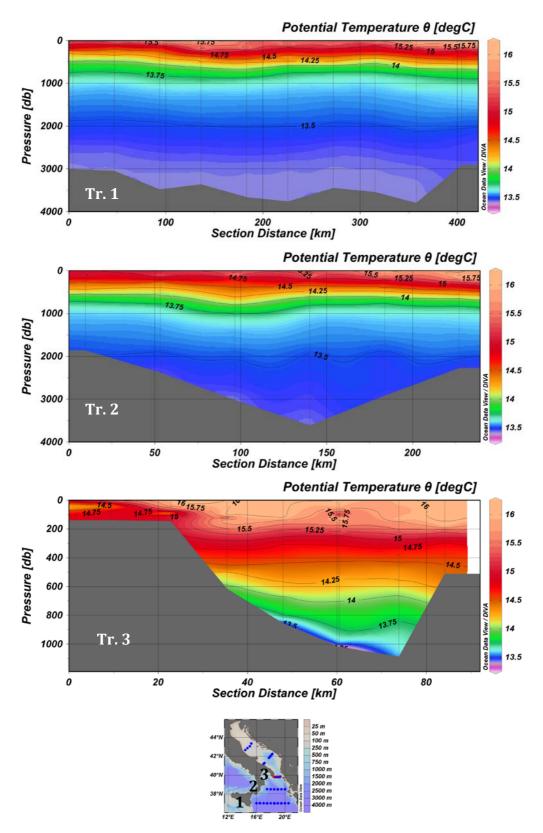
3.2.2. Hydrographic description at selected transects (2012-2015)

In this area the sole R/V activities are those carried out by OGS in the framework of ADREX (see Figure 16). In Figure 24 the TS diagrams are shown (whole water column and zoom), from which the very fresh water (32<S<36) found in front of the Po River, in the Northern Adriatic Sea, is evident, as well as the very dense water (29.3 $<\sigma$ <29.7) that was found in March 2013 in the Mid-Adriatic.

During Adrex14sed, in October 2014, the whole Italian shelf, from north to south has bee sampled. This gives us way to illustrate the strong salinity gradients that exist in the

basin, due to the presence of the Po River in the very north of the Adriatic Sea (see Fig. 25), and the entrance, to the south, of salty surface water.


Figure 24. TS diagrams of the whole water column (left) and in the intermediate-deep layer (right) in the Adriatic-Ionian during 2013-2014. (AW=Atlantic Water; MLIW=Modified Levantine Intermediate Water; ADW=Adriatic Deep Water; MAdDW=Mid-Adriatic Dense Water; EMDW=Eastern Mediterranean Deep Water).

During ADREX14, in February 2014, parallel transect from the Ionian to the Adriatic have been measured. In Fig. 26 the evolution of potential temperature along three of these transects is shown.

Figure 25. Potential temperature distribution in February 2014 along three transects (numbers refer to the numbers in the station map below).

Figure 26. Potential temperature distribution in February 2014 along three transects (numbers refer to the numbers in the station map below).

3.3. Levantine and Aegean Seas

3.3.1. General characteristics

The formation of water masses in the Mediterranean Sea generally slightly differs from season to season but can be stable due to predominance north-westerly winds throughout the year. During the summer, The Levantine basin is covered by the Levantine Surface Water (LSW), above the Atlantic Water layer characterized by a salinity minimum. The LSW water mass is formed by intensive heating and evaporation and has the largest salinity and temperature of the entire Mediterranean Sea. Due to general cyclonic circulation of the Levantine Basin the LSW advects to the Rhodes gyre region and due to its large salinity appears to be the source water for the Levantine Intermediate Water. Moreover, via the Cretan Arc passages, the LSW advects into eastern shelf of the Aegean Sea and participates in the intermediate and deep waters formation of the Aegean Sea.

The Aegean Sea is an elongated embayment of the Mediterranean Sea between the mainlands of Greece and Turkey. In the north, it is connected to the Marmara Sea and Black Sea by the Dardanelles and Bosphorus. Aegean surface water circulates in a counter-clockwise gyre, with hypersaline Mediterranean water moving northward along the west coast of Turkey, before being displaced by less dense Black Sea outflow. The dense Mediterranean water sinks below the Black Sea inflow to a depth of 23-30 metres, then flows through the Dardanelles Strait and into the Sea of Marmara. The Black Sea outflow moves westward along the northern Aegean Sea, then flows southwards along the east coast of Greece. The physical oceanography of the Aegean Sea is controlled mainly by the regional climate, the fresh water discharge from major rivers draining south-eastern Europe, and the seasonal variations in the Black Sea surface water outflow through the Dardanelles Strait. In the Aegean there are three Aegean Sea Surface Water (40-50 metres), Aegean Sea distinct water masses: Intermediate Water (from 40–50 m to 200–300 metres) with temperatures ranging from 11-18 °C and Aegean Sea Bottom Water occurring at depths below 500-1000 m with a very uniform temperature (13–14 °C) and salinity (39.1-39.2).

3.3.2. Hydrographic description at selected transects (2012-2015)

In this area the R/V activities are those carried out by HCMR in the Aegean Sea, by IOLR and OC-UCY and SHODB in the Levantine Sea (see Figure 27). In Figure 28 the TS diagrams for the Aegean Sea are shown (whole water column and zoom), and in Figure 29 the TS diagrams for the Levantine Sea are shown (whole water column and zoom).

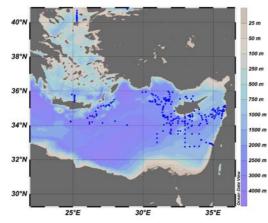


Figure 27. Station map in the Levantine and Aegean Seas

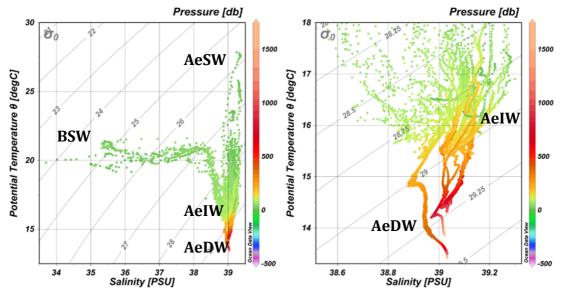


Figure 28. TS diagrams of the whole water column (left) and in the intermediate-deep layer (right) in the Aegean Sea during 2012-2015. (BSW=Black Sea Water; AeSW=Aegean Surface Water; AeIW=Aegean Intermediate Water; AeDW=Aegean Deep Water).

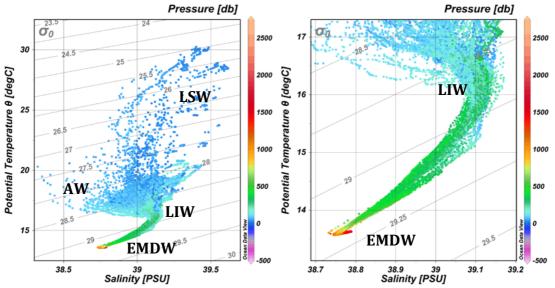


Figure 29. TS diagrams of the whole water column (left) and in the intermediate-deep layer (right) in the Levantine Sea during 2012-2015. (LSW=Levantine Surface Water; AW=Atlantic Water; LIW=Levantine Intermediate Water; EMDW=Eastern Mediterranean Deep Water).

In the southern Aegean Sea, HCMR performs monthly cruises to the E1-M3A buoy, and this gives us the opportunity to construct a time series of water mass properties in this area (Figure 30). The evolution of potential temperature nicely show the formation and disruption of the seasonal thermocline.

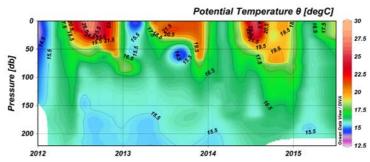


Figure 30. Hovmöller diagram of potential temperature at the E1-M3A station in the South Aegean Sea.

The CYBO 33°E line is aimed at tracking the Atlantic water flow towards the east. This water mass is usually identified by a subsurface salinity minimum, found below a salty and warm layer of Levantine Surface Water (Figure 31).

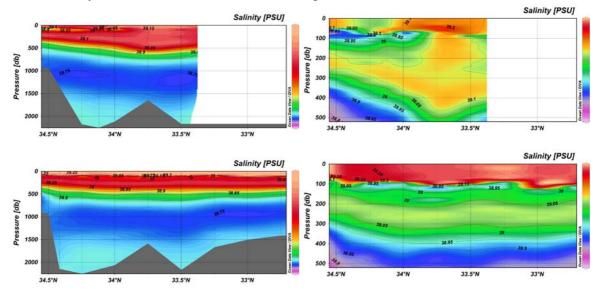


Figure 31. (above) Salinity distribution of the whole water column (left) and in the first 500 m (right) along the 33°E line in december 2012; (below) salinity distribution of the whole water column (left) and in the first 500 m (right) along the 33°E line in december 2013.

The Haifa repeated section provides an insight on shelf-offshore patterns, and here as an example we show the fluorescence (a proxy for Chl-a, hence primary production) distribution from the coastal area (where it is the highest) to almost 100 km offshore (Figure 32).

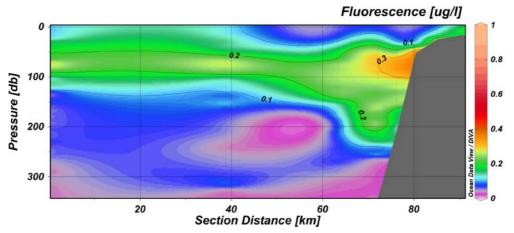


Figure 32. Fluorescence distribution along the Haifa Section in the first 320 m, March 2015.

3.4. Black Sea and Turkish Straits System

3.4.1. General characteristics

The Sea of Marmara is a unique area in the world surrounded by the lands of only one country. It is connected to the Black Sea via the Istanbul Strait (Bosphorus) and to the Mediterranean Sea through the Canakkale Strait. The chemical oceanography of the Sea of Marmara is significantly influenced by the Black and Aegean Seas. The Sea of Marmara has eutrophic characteristics and is ecologically oxygen deficient in its deep layers; hence it is endangered by the potential developing of anoxia conditions associated with the progressing eutrophication of this basin and the adjacent seas. The Black Sea is a deep (about 2 km) marginal basin. There are narrow openings to the shallow Bosphorus Strait at the south that connects the Black Sea with the Marmara Sea, and to the north is the Kerch Strait linking the BS with the Azov. The Black Sea is notorious for its poor ecological conditions, which result from limited water exchange with the Eastern Mediterranean basin, weak vertical mixing due to the strong density stratification and negligible tides. and enhanced nutrient (salinity) enrichment/contamination by river discharges, urban/rural and tourist resort wastes, and pollution discharges from ports and especially from oil terminals, not to also underestimate the ship-borne pollution from ships and oil/gas exploration.

3.4.2. Hydrographic description at selected transects (2012-2015)

In this area the R/V activities are those carried out by METU, MHI and SIORAS in the framework of MAREX and BSEX experiments (WP1). The complete station map is shown in Figure 4. In Figure 33 the TS diagrams are shown (Black Sea and Marmara Sea, notice the very different ranges of salinities in these two basin, and compare them with the previously shown TS diagrams).

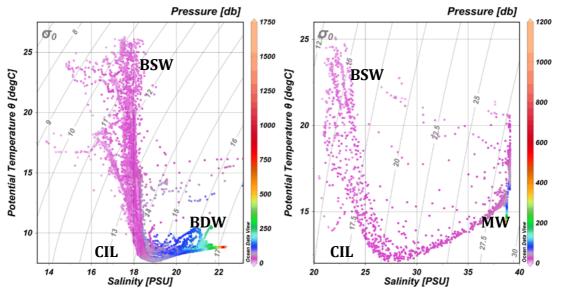
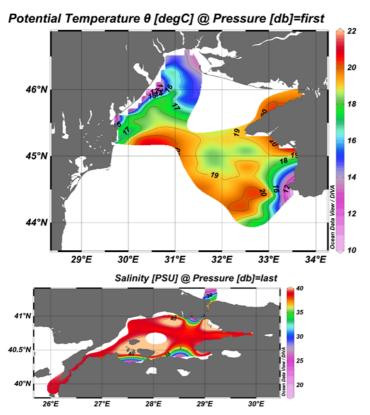



Figure 33. TS diagrams of the whole water column in the Black Sea (left) and in Marmara Sea (right) during 2013-2014. (BSW=Black Sea Surface Water; CIL=Cold Intermediate Layer; BDW=Black Sea Deep Water; MW= Mediterranean Water).

MHI performed a cruise in the north-western part of the Black Sea, with a very high resolution sampling schemes, that allows to produce reliable surface plots of property distribution. The same is true for the MAREX data, where the bottom salinity distribution shows the strong gradients between waters of Mediterranean origin and waters of Black Sea origin (Figure 34).

Figure 34. Surface distribution of temperature in September 2013, in the norht-western Black Sea (left); bottom salinity distribution in the Marmara Sea in June 2013.

During the BSEX cruise parallel transect following the cyclonic rim current in the Black Sea have been performed, and in Figure 35 the potential temperature section from the coastal to the open sea, along the 37.54 °E line is shown as an example, where the Cold Intermediate Layer is well evident.

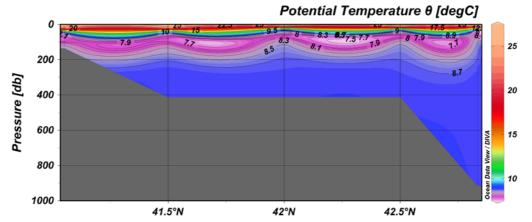


Figure 35. Vertical potential temperature distribution along a south-north transect at 37.54 °E.

4. CONCLUSIONS

The activities planned in subtask 3.2.3 of PERSEUS have allowed to upgrade and improve significantly the observing capacity of the SES by means of the ship based component of the Observing System. All the data collected are being made available through the Perseus database, and all CTD data will possibly flow into open-access databases, such as Coriolis. Improvements were twofold: the overall coordination between cruises, that were planned in advance, sharing the plans with the partners (see results from questionnaires in the appendix) and the general expansion of geographical coverage. However comparing Fig. 3 with Fig. 2 it appears that the gaps have been filled only partially, substantial improvement is to be highlighted for the Algerian Basin, the north-western Mediterranean, the north-eastern Mediterranean as well as for the Black Sea. The southern Ionian Sea is still under-sampled (not sampled at all during Perseus), but this has to be mainly ascribed to political issues and ongoing conflicts in the southern shore countries, which became a particular critical issue during the whole part of the project duration.

APPENDIX 1: QUESTIONNAIRES

SIORAS questionnaire on planned cruises

									OBJE	CTIVE	S AND	D BRIE	EF NA	RRAT	VE O	FCRUISE	E enter sufficient information about the purpose and nature of the cruise so as to provide the context in which the report data were collected.
									The p	nincipa	l objec	tive of	the cr	uises a	are to	contribute	in the creation of time series of hydrophysical, hydrochemic
									to stu	tv mai	or circu	lation	featu	es of o	oasta	l dynamic	ansect across the coastal zone off Gelendzhik (NE Black Seal s and its influence on the ecosystem.
					ERSE												
	R	/V PRI	E-CRU	ISE P	LANN	ING S	UMMAR	Y REPORT									
RUI	ES FR	EQUE	NCY,	DURA				l									
otal	numbe	r of cr	uises														
tarti	ig date	e (first da	y of firs	t cruise). For ar	n existin	g ongoing p	rogram please indicate the first cruise that will be included into the PERSEUS									
ctivitie																	
mor	tiv year								name o	f the pro	iject, and	d of orga	anisation	the cruit respon	ses are sible for	designated co-ordinati	as part of another project (or expedition) other than PERSEUS, then enter the project.
Endin ctivitie		(first day	of last	cruise)	. For an	existing	ongoing pro	ogram please indicate the last cruise that will be included into the PERSEUS	Proje	ct nam	ne: Fur	ndame	ental p	robler	ns of	ocean: p	hysics, geology, biology, ecology,
0/20 ⁻ mon	<u>5</u> N year								-								national
requ	ency (n es per y	nonthly,	season	al etc)					Coord	linatin	ig bod	y: Pre	sidiur	n of R	ussiar	n Acaden	ny of Sciences
									PRIN		INVES	STIGA	TORS	: Enter t	he nam	e and addre	ess of the Principal Investigators responsible for the data to be collected on the
)urat)ne da	on of e y	each ci	uise	numbe	r of days	approx	imately)		on the f	and who ollowing	i table un	e contac nder the	column	heading	Pl', to	identify the	e data. (The letter assigned below, against each Principal Investigator is used data sets for which he/she is responsible)
											etskiy						
RESP	DNSIB	LE LA	BORA	TOR	f ente the	er name cruises	and addres	s of the laboratory responsible for coordinating the scientific planning of			evich E						
	Shirs															yandex.	
	ss: <u>36</u>		novs	kii pr.	1179	97 Mo	scow									iina@gm	ail.com)
	ry: Ru										exande						
RESP ruises	DNSIB	LE CO	ORDI	NATI	IG SC	IENTI	ST enter na	me, email and laboratory of the person in charge of coordinating all the	F. <u>Q</u>	strovs	kiy Ale	exand	er (os	asha@	gocea	n.ru)	
	Viach			enets	kiy				TIME	SERIE	S DAT.	A, MO	ORIN	GS, BO	TTOM	I MOUNT	ED GEAR AND DRIFTING SYSTEMS
	SK@c			ofexp	erime	ntal p	hysics of	ocean	This sed	tion shou	id be used	d to repo	rt data to	be collec	ted at fo	ed locations	which are returned to routinely in order to construct "time series".
		10110	arara				mananan	• BEALINA	cruises.	Separate					ation/sta		and drifting systems (both surface and deep) to be deployed and/or recovered <u>during</u> sloyment positions need be given for drifting systems).
HIEF		ITIST(S) ⊮a	iready	known	enter na	me and lab	pratory of the person(s) in charge of the scientific work (chief of mission) during	PI	ų	APPR ATITUDE		TE POSIT	NON NGITUD	E	DATA TYPE	DESCRIPTION Identify, as appropriate, the nature of the instrumentation the parameters (to measured, the number of instruments and their deptis, whether deployed ar recovered, estimated duration of deployments, and any identifiers given to the site
	slav. Ki	remene	etskiv						See top of page.	deg	min	N/S	deg	min	EW	enter Roscop code(s)	recovered, estimated duration of deployments, and any identifiers given to the site station name, code).
	SIGA.UN	SHRU	-arring													from the list on next pages	
									A	44	5673	N	37	9851	E	H10	CTD cast from 0m to the bottom (pressure, temperature, conductivity, fluorescence, light transmission, irradiance (PAR), depth, salinity, density Station Perseus-1 (~25m bottom depth)
												- 1					atabuli Peloede-r (-zan bottom depui)
в	44	5673	N	37	9851	E	H22	Niskin bottle at Depths: 1, 10, 20, Chi-a max. Phosphate measurements									
в	44	5673	N	37	9851	E	H24	Station Perseus-1 (~25m bottom depth) Niskin bottle at Depths: 1, 10, 20, Chi-a max. Nitrate measurements Station Perseus-1 (~25m bottom depth)									
в	44	5673	N	37	9851	E	H25	Niskin bottie at Depths: 1, 10, 20, Chi-a max. Nitrale measurements Station Persues: 1 (~25m bottion: depth) Niskin bottle at Depths: 1, 10, 20, Chi-a max, Ammonia measurements	8	44	5375	N	37	9698	E	H28	Station Perseus-3 (~100m bottom depth) Niskin bottis at Depths: 1, 10, 20, Chi-a max, 50, 100m, pH measurements
B	44	5673 5673	N	37 37	9851 9851	E	H76 H26	 Niskin botte at Deptile 1, 10, 20, CHa's nake. Anterionital measurements Niskin botte at Deptha: 1, 10, 20, CH-a max. Silicate measurements Station Perseue-1 (-25m bottom depth) 	c	44	5375	N	37	9698	E	B07	Niskin bottie at Deptins: 1, 10, 20, Chi-armax, 50, 100m, pH measurements Station Perseu-3 (-100m bottom depth) Niskin bottie at Deptins: 1, 10, 20, Chi-armax, 50, 100m. Pelagic bacterla/micro- organisms measurements
в	44	5673	N	37	9851	E	H27	Niskin bottle at Depths: 1, 10, 20, Chi-a max. Alkalinity measurements Station Perseus-1 (~25m bottom depth)	D	44	5375	N	37	9698	E	B02	organisms measurements Station Perseus-3 (~100m bottom depth) Niskin bottie at Depths: 1, 10, 20, Chi-a max, 50, 75m. Phytoplankton pigment measurements
в	44	5673	N	37	9851	E	H28	Niskin bottle at Depths: 1, 10, 20, Chi-a max, PH measurements Station Perseue-1 (~25m bottom depth) Niskin bottle at Depths: 1, 10, 20, Chi-a max, Pelagic bacterialmicro-organisms	в	44	5375	N	37	9698	E	B08	Station Persous 3 (~100m bottom depth) Niskin bottis at Depths: 1, 10, 20, Chi-a max, 50, 75m. Phytopiankton species composition measurements
c	44	5673	N	37	9851	E	B07	measurements Station Peresue-1 (-25m bottom depth) Niskin bottle at Depths: 1, 10, 20, Chi-a max. Phytoplankton pigment	-								Station Perseus 3 (~100m bottom depth) Two nets from the bottom to surface. Zooplankton abundance and species composition measurements. For mesozooplankton – a Juday net (37 cm mouth
D	44	5673	N	37	9851	E	B02	measurements Station Perseus-1 (-25m bottom depth) Niskin bottie at Depthe: 1, 10, 20, Ch-1 amax. Phytoplankton species composition	E	44	5375	N	37	9698	Ε	B09	dameter, 180 µm meeh ates), for an intercooparation a solucy me (of childhous organisms – a conical net (80 cm mouth diameter, 400 µm meeh size) Station Perseue 3 (~100m bottom depth) Niskin bottle at Depthe: 1, 10, 20, Chi-a max, 50, 75m. Particulate organic matter
в	44	5673	N	37	9851	E	B08	Station Perseus-1 (~25m bottom depth) Two nets from the bottom to surface. Zooplankton abundance and species	в	44	5375	N	37	9698	Е	B71	Niskin bottle at Depths: 1, 10, 20, Chl-a max, 50, 75m. Particulate organic matter (POC, PON) measurements Station Perseus-3 (~100m bottom depth)
E	44	5673	N	37	9851	E	B09	I wo nets from the bottom to surrace. Zooplankton abundance and species composition measurements. For mesozooplankton – a Juday net (37 cm mouth diameter, 180 µm meeh size), for macrozooplankton including gelatinous organisme – a conical net (80 cm mouth diameter, 400 µm meeh size)	A	44	5246	N	37	9645	E	H10	CTD cast from 0m to the bottom (pressure, temperature, conductivity,
-								organisme – a conical net ((80 cm mouth diameter, 400 µm mesh size) Station Perseus-1 (~25m bottom depth) Niskin bottie at Depths: 1, 10, 20, Chi-a max. Particulate organic matter (POC, PON) measurements	В	44	5246	N	37	9645	E	H10	Ruorescence, light transmission, irradiance (PAR), depth, salinity, density Station Perseus-4 (~200m bottom depth) Niskin hottle at Denthes: 1 to 20 cbi-a max 50 100m oxicianoxic laver
8	44	5673	N	37	9851	E	B71	Station Perseus-1 (~25m bottom depth)									Phosphate measurements Station Perseus-4 (~200m bottom depth)
A	44	5505	N	37	9760	ε	H10	CTD cast from 0m to the bottom (pressure, temperature, conductivity, fluorescence, light transmission, trradiance (PAR), depth, salinity, density Station Perseus-2 (-Soft bottom depth)	в	44	5246	N	37	9645	E	H24	Niskin bottis at Depths: 1, 10, 20, Chi-a max, 50, 100m, oxiolanoxic layer. Nitrate measurements Station Perseus-4 (~200m bottom depth)
в	44	5505	N	37	9760	E	H22	Station Perseus-2 ("Som bottom depth) Niskin bottle at Depths: 1, 10, 20, Chi-a max, Som. Phosphate measurements Station Perseus-2 ("Som bottom depth)	в	44	5246	N	37	9645	E	H25	Niskin bottle at Depths: 1, 10, 20, Chl-a max, 50, 100m, oxiclanoxic layer. Nitrate
в	44	5505	N	37	9760	E	H24	Niskin bottle at Depths: 1, 10, 20, Chi-a max, 50m. Nitrate measurements Station Perseus-2 (~50m bottom depth)	в	44	5246	N	37	9645	E	H76	Station Perseus-4 (~200m bottom depth) Niskin bottis at Depths: 1, 10, 20, Chi-a max, 50, 100m, oxic/anoxic layer. Ammoni moasurements
в	44	5505	N	37	9760	E	H25	Niskin bottie at Depths: 1, 10, 20, Chi-a max, 50m. Nitrate measurements Station Perseus-2 (~50m bottom depth) Niskin bottie at Depths: 1, 10, 20, Chi-a max, 50m. Ammonia measurements	в	44	5246	N	37	9645	E	H26	Station Perseus-4 (~200m bottom depth) Niskin bottie at Depths: 1, 10, 20, Chi-a max, 50, 100m, oxic/anoxic layer. Silicate measurements
B	44	5505 5505	N	37 37	9760 9760	E	H76 H26	Station Perseus-2 (~50m bottom depth) Niekin bottie at Denthe: 1 10 20 Chila max 50m Silicate measurements	в	44	5246	N	37	9645	E	H27	Station Perseus-4 (~200m bottom depth) Niskin botte at Depths: 1, 10, 20, Chi-a max; 50, 100m, oxic/anoxic layer. Alkalinit measurements
в	44	5505	N	37	9760	E	H27	Station Parawa-2 (-S8m bottom depth) Niekin bottle at Depthe: 1, 10, 20, Chi-a max, 50m. Aikalinity measurements Station Perseus-2 (-S0m bottom depth)	в	44	5246	N	37	9645	Е	H28	Station Perseus-4 (~200m bottom depth) Niskin bottis at Depths: 1, 10, 20, Chi-a max, 50, 100m, oxiolanoxic layer. pH measurements
в	44	5505	N	37	9760	E	H28	Niskin bottie at Depths: 1, 10, 20, Chi-a max, Som, pH measurements Station Perseus-2 (-Som bottom depth) Niskin bottie at Depths: 1, 10, 20, Chi-a max, Som, Pelagic bacteria/micro-	с	44	5246	N	37	9645	E		Station Perseus 4 (~200m bottom depth) Niskin bottis at Depths: 1, 10, 20, Chi-a max, 50, 100m, oxic/anoxic layer. Pelagic bacteria/micro-organisms measurements
с	44	5505	N	37	9760	E	B07	organisms measurements Station Perseus-2 (~50m bottom depth) Niskin bottie at Depths: 1, 10, 20, Chi-a max, Son, Phytopiankton pigment	D	44	5246	N	37	9645	E	B07 B02	Station Perseus-4 (~200m bottom depth) Niskin bottle at Depths: 1, 10, 20, Chi-a max, 50, 75m. Phytopiankton pigment
D	44	5505	N	37	9760	E	B02	measurements Station Perseus-2 (~50m bottom depth) Niskin bottle at Depths: 1, 10, 20, Chi-a max, 50m. Phytoplankton species	в	44	5246	N	37	9645	- E		Station Perseus-4 (~200m bottom depth)
в	44	5505	N	37	9760	E	B08	Two rels from the bottom to surface. Social mana, sont - Physical action species composition measurements Station Perseus 2 (-Som bottom depth) Two rels from the bottom to surface. Zooglankton abundance and species composition measurements. For mesozooplankton – a Juday net (37 cm mouth	-		0245	."	31	J940	-	B08	station Perseus-4 (~200m bottom depth) Two nets from sigma-theta 15.2 to surface. Zooplankton abundance and species
Е	44	5505	N	37	9760	Е	B09	two ness from the bolcom to surface. Zooplankton abundance and species composition measurements. For mesozooplankton – a Judgy net (37 cm mouth diameter, 180 µm mesh stze), for macrozooplankton including gelatinous created and the second	Е	44	5246	N	37	9645	Е	B09	composition registrerates to conception to cooperation admission admissio
-								diameter, 180 µm mesh stzej, for macrozooplankton including gelatinous organisme – a conical net (80 cm mouth diameter, 400 µm mesh stzej) Station Perseuse 2 (~50 motorm depth) Niekin botte at Depthe: 1, 10, 20 Chi-a max, 50m Particulate organic matter (POC,	в						-	871	Station Perseus 4 (~200m boluou traineter, 400 pm meen st25) Station Perseus 4 (~200m boltom depth) Niskin botte at Depths: 1, 10, 20, Chi-a max, 50, 75m. Particulate organic matter (POC, POH) measurements
8	44	5505	N	37	9760	E	871	PON) measurements Station Perseus-2 (~50m bottom depth)		44	5246	N	37	9645	E		Station Perseus 4 (~200m bottom depth)
A	44	5375	N	37	9698	E	H10	CTD cast from 0m to the bottom (pressure, temperature, conductivity, fluorescence, light transmission, irradiance (PAR), depth, salinity, density Station Perseus-3 (~100m bottom depth)	A	44	5125	N	37	9591	E	H10	CTD cast from 0m to the bottom (pressure, temperature, conductivity, fluorescence, light transmission, irradiance (PAR), depth, salinity, density Station Persue's (-500m bottom depth)
в	44	5375	N	37	9698	E	H22	Niskin bottie at Depths: 1, 10, 20, ChI-a max, 50, 100m. Phosphate measurements Station Perseus-3 (~100m bottom depth)	в	44	5125	N	37	9591	E	H22	Niskin bottle at Depths: 1, 10, 20, Chi-a max, 50, 100m, oxiolanoxic layer. Phosphate measurements Station Perseus-5 (~500m bottom depth)
	44	5375	N	37	9698 9698	E	H24	Niskin bottle at Depths: 1, 10, 20, Chi-a max, 50, 100m. Nitrate measurements Station Perseus-3 (~100m bottom depth)	в	44	5125	N	37	9591	Е	H24	Niskin bottie at Depths: 1, 10, 20, Chl-a max, 50, 100m, oxicianoxic layer. Nitrate measurements
в						E	H25	Niskin bottle at Depths: 1, 10, 20, Chi-a max, 50, 100m. Nitrate measurements					1				Station Perseus-5 (~500m bottom depth)
в	44	5375 5375	N	37		-	une	Station Perseus-3 (~100m bottom depth) Niskin bottie at Depths: 1, 10, 20, Chi-a max, 50, 100m. Ammonia measurements	1								
	44 44 44	5375 5375 5375	N N N	37 37 37	9698 9698 9698	E	H76 H26	Station Perseurs 0 (-100m bottom depth) Niekin bottie at Depths: 1, 10, 20, Chi-a max, 50, 100m, Ammonia measurements Station Perseurs-3 (-100m bottom depth) Niekin bottis at Depths: 1, 10, 20, Chi-a max, 50, 100m, Sillicate measurements Station Perseurs-3 (-100m bottom depth)	I								

								Station Perseus-5 (~500m bottom depth)
в	44	5125	N	37	9591	E	H28	Niskin bottie at Depths: 1, 10, 20, Chi-a max, 50, 100m, oxic/anoxic layer. pH measurements Station Perseus 5 (-500m bottom depth)
с	44	5125	N	37	9591	E	B07	Niskin bottle at Depths: 1, 10, 20, Chi-a max, 50, 100m, oxic/anoxic layer. Pelagic bacteria/micro-organisms messurements Station Perseus 5 (~500m bottom deoth)
D	44	5125	N	37	9591	E	B02	Niskin bottle at Depths: 1, 10, 20, Chi-a max, 50, 75m. Phytoplankton pigment measurements Station Perseus 5 (~500m bottom depth)
в	44	5125	N	37	9591	Е	B08	Niskin bottle at Depths: 1, 10, 20, Chi-a max, 50, 75m. Phytoplankton species composition measurements Station Perseus 6 (=50m bottom depth)
E	44	5125	N	37	9591	E	B09	Two nets from signs-theta 15.2 to surface. Zooplankton abundance and species composition measurements. For mesozooplankton – a Juday net (37 cm mouth diameter, 180 µm mes taze), for macrozooplankton including gelatihous organisms – a conical net ((80 cm mouth diameter, 400 µm mesh stze) Station Perseus 5.1 = 500 motion bottom depth)
в	44	5125	N	37	9591	Е	871	Niskin bottie at Depths: 1, 10, 20, Chi-a max, 50, 75m. Particulate organic matter (POC, PON) measurements Station Perseus 6 (=50m bottom depth)
F	44	2944	N	37	5838	Е	H10, D71	Anchored profiler Aqualog, CTD and ADCP casts from 20 m depth down to 250 m depth, 4-6 times per day.

GENERAL OCEAN AREA(S): Enter the names of the cosans and/or seas in which data will be collected during the cruises – please use commonly recognised names (see, for example, International Hydrographic Bureau Special Publication No. 23, 'Limits of Oceans and Seas'). Black Sea

SPECIFIC AREAS: Enter a description of the area(s). Such descriptions may include references to local geographic areas, to sea foor features, or to geographic coordinates. Please times have the number of each 5 derive square in which data were collected from the mandea square list provided at the ead of the document

Mardsen square 177;2

MHI questionnaire on planned cruises

	OBJECTIVES AND BRIEF NARRATIVE OF CRUISE enter sufficient information about the purpose and nature of the cruise as to provide the context in which the report data were collected.
PERSEUS WP3 RV PRE-CRUISE PLANNING SUMMARY REPORT	The main objective of the soviese are to contribute in measurements of calleal, physical and biochemical carame vu venue. A Benearch vessel in the Western part of the Black Sea. • monitoring along activity for the search of the Black Sea. • callearvations of twastomations of Cald Intermediate Laver: • study of searconal evolution of Sevastopal anticyclionic soday. • hordroiced observations in costal zone near Insett and Danube, estuaries and near Zmeinvy island with the aim to study of river water transformation in summer period. • vertical profiling of currents by ADCP.
CRUISES FREQUENCY, DURATION	
Total number of cruises: 2 R/V "Professor Vodyanitsky" and 3 cruises on small-size ship.	
Starting date: (first day of first cruise). For an existing ongoing program please indicate the first cruise that will be included into the PERSEUS activities	
08/2013 month/year	
Ending date (first day of last cruise). For an existing ongoing program please indicate the last cruise that will be included into the PERSEU activities	PROJECT (IF APPLICABLE) if the cruises are designated as part of another project (or expedition) <u>other than PERSEUS</u> , then enter name of the project, and of organization responsible for co-ordinating the project. Project name: <u>Macing.Programma</u>
<u>11/2013</u> monthi year	Project name: mainer rushimmer
Frequency (monthly, seasonal etc) Seasonal for R/V "Professor Vodyanitsky" and monthly for small-size ship.	Coordinating body: Marine Hydrophysical Institute
Duration of each cruise (number of days approximately) 10 days for RVV "Professor Vodyanitsky and 2-3 days for small-size ship	PRINCIPAL INVESTIGATORS: Enter the name and address of the Principal Investigators responsible for the data to be collected or on sizes and who may be contacted for further information about the data. (The letter assigned below, against each Principal Investigator is to on the following table under the column heading 'PI', to identify the data sets for which he has in seponsible)
RESPONSIBLE LABORATORY the cruises	A. to be identify later
Name: Marine Hydrophysical Institute, (MHI) Address: <u>2, Kapitanskava St., Sevastopol, 99911, Ukraine</u> Country: <u>Ukraine</u>	
RESPONSIBLE COORDINATING SCIENTIST	
Name: <u>Vitaliv, Ivanov</u>	TIME SERIES DATA, MOORINGS, BOTTOM MOUNTED GEAR AND DRIFTING SYSTEMS
Laboratory: Marine Hydrophysical Institute, (MHI)	This section should be used to report data to be collected at fixed locations which are returned to routinely in order to construct time series. This section may also be set of reporting movery, butch mounted gate and atting splanes (both states and being) to be designed actor recovered <u>during</u> that the section may also be set of reporting movery to be an another than a set atting splanes (both states and being) to be designed actor recovered <u>during</u> that the section may also be set of reporting movery to be an another than a set of the section of th
CHIEF SCIENTIST(S) If already known enter name and laboratory of the person(s) in charge of the scientific work (chief of mission) during the onlines.	PI LATITUDE LONGTUDE LATITUDE LONGTUDE TryPE Letrity, as appropriate, be nature of the instrumentation the parameters measures, the number of natures and the experiments are the reaction that the number of natures and the experiments are the reaction that the number of natures are the experiments are the reaction that the number of natures are the experiments are the reaction that the number of nature of the set of the set of the number of natures are the reaction that the number of nature of the set of the set of the number of natures are the number of nature of the set of the set of the set of the number of the number of the number of the set of the number of the
	A 45 30 N 30 30 E H10 Around 50 CTD cate from 0 to 150 m on the shelf and till 500m over the s margin (pressure, temperature, conductivity, organ, light transmission, o sality, dentify
	B 45 30 N 30 30 E H22 Stations: bottle at Depths: 1, 10, 20, 50, 75, 100. Phosphale measurement
с <u>45 30 м 30 30 Е</u> H24 Stations bottle at Decther, 1, 10, 20, 50, 75, 100, Mitrate measurements	CENERAL OCEAN AREA(S): Enter the names of the oceans and/or seas in which rists will be collected during the onises – please commonly recognised names (see, for example, International Hydrographic Bureau Special Publication No. 23, "Limits of Oceans and Seas") Black Sea
C 45 30 N 30 30 E HDS Stations: bottle at Depths: 1, 10, 20, 50, 75, 100. HBMs exeasurements C 45 30 N 30 30 E D71 Around 90 lowered ADCP cashs from 0 to 150 m on the entert and 81 Stotm over the margin greasers. Inspectative, current workship	SPECIFIC AREAS: Enter a description of the area(s). Such descriptions may include references to local geographic areas, to sea foor feature or to geographic coordinates. Please insert here the number of each 5 degree square in which data were collected from the marsden square list provided at the end of the document.
C 44 00 N 32 30 E D05 Pour thermo-profile floats will be deployed in 2013 by the MHI funds: > 1 float - in summer, > 3 floats in Nov-Dec.	Black Sea Mardsen square (177;1), (177;2)
	The Black Set is the support interd sea and depend batin r-02000 mill The hybriding/ord structure in the Black Sea is dominated by multiple as brocketon patients and is forward the bioconset filter where the Pinn environment and the biochard filter and the of kern. The circulation in the Black Sea is dotted by the combined effect of two gyres features and Rim current. The Black Sea has and extensive annotance and environmentation and the structure of the combined effect of two gyres features and Rim current. The Black Sea has and extensive annotance and environmentation and the structure of the combined effect of two gyres features and Rim current. The Black Sea has and
	The location of the casts at the Black Sea was chosen, since permit to study of seasonal evolution of Sevastopol anticyclonic eddy and of riv water transformation on the shelf and its impact on the shelf ecosystem.

HCMR questionnaire on planned cruises

	OBJECTIVES AND BRIEF NARRATIVE OF CRUISE enter sufficient information about the purpose and nature of the cruise as to provide the context in which the report data were collected.
	The main objective of the cruises are to contribute in the creation of a times series of optical, physical and biochemical parameters measurements using a Research vessel at the location of the POSEIDON-E1-MAA buoy
PERSEUS WP3 R/V PRE-CRUISE PLANNING SUMMARY REPORT	
CRUISES FREQUENCY, DURATION	
Total number of cruises:	
Starting date (first day of first cruise). For an existing ongoing program please indicate the first cruise that will be included into the PERSEUS activities	
01/2013 monthi year	PROJECT (IF APPLICABLE) if the cruises are designated as part of another project (or expedition) <u>other than PERSEUS</u> , then enter name of the project, and of organisation responsible for co-ordinating the project.
Ending date (first day of last cruise). For an existing ongoing program please indicate the last cruise that will be included into the PERSEUS activities	Project name: POSEIDON-E1-M3A.monitoring
06/2015 monthlysar	Project type (institutional, national, international): institutional
Frequency (monthly, seasonal etc) Monthly	Coordinating body: INSTITUTE.OF.OCEANOGRAPHY. HELLENIC.CENTRE.FOR.MARINE.RESEARCH
Duration of each cruise (number of days approximately) One day	PRINCIPAL INVESTIGATORS: Enter the name and address of the Principal Investigators responsible for the data to be collected or cruises and who may be contacted for further information about the data. (The letter assigned below, against each Principal Investigator is on the following table under the count meaking PT, to identify the data sets for which helds is responsible.
	A. NTOUMAS.MANOLIS
RESPONSIBLE LABORATORY enter name and address of the laboratory responsible for coordinating the scientific planning of the cruises	B. DAFNOMILLELENI
Name: INSTITUTE OF OCEANOGRAPHY, HELLENIC CENTRE FOR MARINE RESEARCH, HCMR	C. ZIVANOVIC SNEZANA
Address: Former American Base of Gournes, PO Box 2214, 71003, Heraklion, Crete	D. <u>PSARRA STELLA</u>
Country: GREECE	E. BITTA XIVI
RESPONSIBLE COORDINATING SCIENTIST enter name, email and laboratory of the person in charge of coordinating all the cruises	F. FRANGOULIS CONSTANTIN
Name: ERANGOULIS CONSTANTIN email: <u>cfrangoulis@hcmt.gr</u>	TIME SERIES DATA, MOORINGS, BOTTOM MOUNTED GEAR AND DRIFTING SYSTEMS
Laboratory: INSTITUTE OF OCCEANOGRAPHY, HELLENIC, CENTRE FOR MARINE RESEARCH, HCMR	This section advalate used to report data to be celleded at their bootione which are instrumed to nuclearly in order to construct three server. This section and use used for segret reporting manafers, both and attracting parties rules tracked and relegi to be septoned and/or recovered <u>during</u> <u>couldes</u> , Separate entries stoud be made for each locationation (pm) segretment, both and the ph) to be deviced and use APPROVAMENT FOOTTON DATA.
CHIEF SCIENTIST(S) If already known enter name and laboratory of the person(s) in charge of the scientific work (chief of mission) during the onuses.	PI Cee LATITUDE LONGTUDE top deg min NG deg min EW page. Example and the second sec
FRANGOULIS CONSTANTIN	from the list on next
	A 35 7837 N 24 329 E H10 Station POSEIDON-E1-M3A, CTD cast trom 0 to 159 m (pressure, temperative conductivity, oxygen, . flooresence, light transmission, Irradiance (PAR), or aulinity, wently
	B 35 7837 N 24 9292 E H22 Station POSEIDON-E1-M3A. Niskin bottle at Depths: 1, 10, 20, 50, 75, 100

	<u> </u>							Phosphate measurements
с	35	7837	N	24	9292	E	H24	Station POSEIDON-E1-M3A. Niskin bottis at Depths: 1, 10, 20, 50, 75, 100. Nitrate measurements
с	35	7837	N	24	9292	E	H25	Station POSEIDON-E1-M3A. Niskin bottle at Depths: 1, 10, 20, 50, 75, 100. Nitrite measurements
с	35	7837	N	24	9292	E	H76	Station POSEIDON-E1-M3A. Niskin bottle at Depths: 1, 10, 20, 50, 75, 100. Ammonia measurements
С	35	7837	N	24	9292	E	H26	Station POSEIDON-E1-M3A. Niskin bottle at Depths: 1, 10, 20, 50, 75, 100. Silicate measurements
D	35	7837	N	24	9292	E	B02	Station POSEIDON-E1-M3A, Niskin bottle at Depths: 1, 10, 20, 50, 75, 100. Phytoplankton pigments measurements
E	35	7837	N	24	9292	E	B07	Station POSEIDON-E1-M3A. Niskin bottle at Depths: 1, 10, 20, 50, 75, 100. Pelagic bacteria/micro-organisms measurements
D	35	7837	N	24	9292	E	B08	Station POSEIDON-E1-M3A. Niskin bottle at Depths: 1, 10, 20, 50, 75, 100. Phytoplankton cells composition measurements
F	35	7837	N	24	9292	E	B09	Station POSEIDON-E1-M3A. 1 net haul at the 0-100 m depth layer using 2 connected nets of 45 µm and 200 µm mesh size. (Calvet type; both 25 cm mouth diameter). Zoopdankton abundance and size massurements

GENERAL OCEAN AREA(S): Enter the names of the oceans and/or seas in which data will be collected during the cruises – please use commonly recognised names (see, for example, International Hydrographic Bureau Special Publication No. 23, 'Limits of Oceans and Seas').

Cretan Sea

SPECIFIC AREAS: Enter a description of the area(s). Such descriptions may include references to local geographic areas, to sea floor features, or to geographic coordinates. Please taiset here the number of each 5 degree square in which data were collected from the marxies square list provided at the ead of the document.

Cretan Sea Mardsen square 142;1

The Orelan Gas is the targest and deepest basin (2500 m) in the south Aegean Gas. The hydrological structure in the Cretan Sea is dominated by The circulation in the Cretan Sea is dominated by the circulation in the Cretan Sea is a doctated by the combined effect of the graft Bearsean much structure. An anti-patience eddy in the west and a cycleric eddy in the east. The biological of the E148A site at the Cretan Sea was chosen; since allowuph does to the costs (-24 mm) if is an area of open sea conditions, documenting and area formed on the doce of the combined effect of the graft Bearsean and the cretan Sea as a chosen.

IOLR questionnaire on planned cruises

OER questionnaire on planned er dises	
PERSEUS WP3 R/V PRE-CRUISE PLANNING SUMMARY REPORT	
CRUISES FREQUENCY, DURATION	
Fotal number of cruises: 08	
Starting date (first day of first oruise). For an existing ongoing program please indicate the first cruise that will be included into the PERSEUS	OBJECTIVES AND BRIEF NARRATIVE OF CRUISE enter sufficient information about the purpose and nature of the oruses to as to provide the context in which the report data were collected.
01/2012	
month/year Ending date (first day of last cruise). For an existing ongoing program please indicate the last cruise that will be included into the PERSEUS convines	The main objective of the "Hafa Section" project is to observe the long-term variability and evolution of the maj water mass parameters in the South Easter comer of the Levantine Basin in the context of the climate change an anthropogenic pressure (over > 10 ys).
12/2015 month/ war	PROJECT (IF APPLICABLE) if the cruises are designated as part of another project (or expedition) other than PERSEUS, then enter the name of the project, and of organisation responsible for co-ordinating the project.
Frequency (monthly, seasonal etc) Twice per Year	Project name: HaiSec (Haifa Section)
Duration of each cruise (number of days approximately) 1 day	Project type (institutional, national, international): institutional
Juratuoni oi each ci uise (numee or asys approximately) i day	Coordinating body: IOLR
RESPONSIBLE LABORATORY enter name and address of the laboratory responsible for coordinating the scientific planning of	
the cruises Name: I <u>OLR (Israel Oceanographic & Limnological Res</u> earch)	
Address: Tel-Shikmona, P.O.B. 8030, Haifa 31080 Country: ISRAEL	
RESPONSIBLE COORDINATING SCIENTIST enter name, email and laboratory of the person in charge of coordinating all the cuises	
Name: Isaac Gertman	
email: isaac@ocean.org.il Laboratory: IOLR	
CHIEF SCIENTIST(S) If already known enter name and laboratory of the person(s) in charge of the scientific work (chief of mission) during the cruices.	
Nurit Kress, IOLR Isaac Gertman, IOLR	
PRINCIPAL INVESTIGATORS: Enter the name and address of the Principal Investigators responsible for the data to be collected on the oncises and who may be contacted for further information about the data. (The letter assigned below, against each Principal Investigator is used, on the following table under the column heading PT. (b) is either leads are for which heads is estimated in the levels are stored heads are stored are been are stored are	-
A. Nurit Kress(IOLR) - data received by chemical analysis of water sampled by Niskin bottles	
B. Isaac Gertman (IOLR) – CTD data	
TIME SERIES DATA, MOORINGS, BOTTOM MOUNTED GEAR AND DRIFTING SYSTEMS	
This section should be used to report data to be collected at fixed locations which are returned to routhely in order to construct time series. This section may also be used for reporting moorings, bottom mounted gear and diffuing systems (both surface and deep) to be deployed and/or recovered <u>during the contacts</u> . Separate durines should be made to each locationstation (movide) reporting toxistions need be given for diffuing systems).	
Plan coordinates for HaSec cruise	
St. name Depth [m] Latitude N E	
deg min deg min H01 50 32 54.0 34 55.2	
H02 200 32 55.2 34 52.8 H03 500 32 55.8 34 51.0	
H05 100 32 57.0 34 45.0 H05 1400 33 0.0 34 30.0	
H06 1600 33 9.0 34 9.6	
Exo tatorio is resulted in: 1. CTI odd, PHUM sharping alte 1 db from 0 b lottom, water temperature, salimb, oxygen, fuoreconce, light transmission (PE B) 2. Nakan bolle osta (HDB) on seecide levers, atkalimb, discolved oxygen, finate, noteix, indiate-inflite, phosphale, PL, silicate, Chicophila (PL A)	
	_
GENERAL OCEAN AREA(S): Enter the names of the oceans and/or seas in which data will be collected during the onises – please use commonly recognised names (see, for example, International Hydrographic Bureau Special Publication No. 23, 'Limits of Oceans and Seas').	
28A Mari Sao Lavantina Basin	

28A. Med. Sea – Levantine Basin

SPECIFIC AREAS: Enter a description of the area(s). Such descriptions may include references to local geographic areas, to sea floor features, or to geographic coordinates. Rease latent here the number of each 1 degree square in which data were collected from the mandeus square list provided at the end of the document

South East part of the Levantine basin. The section is started near to Haifa and ended about 100 km from Haifa in the North West direction.

Marsden square : 141

OC-UCYquestionnaire on planned cruises

_																		
					DED	TICE												
		R/V F	RE-C	RUISE		EUS V		RY REPORT										
										0.00								
CD		FREQ								CHIEF SCIENTIST(S) If already known enter name and laboratory of the person(s) in charge of the scientific work (chief of mission) during the cruites.								
		ber of			RATIC	11				YIANNA SAMUEL-RHOADS for the bi-monthlycruise								
									at an institution in the institute of inter the DEDCELIC	MAR	IOS NI onmen		IDES f	for the	annua	l cruis	es with a	duration of 10 days in cooperation with AP Marine
activ	Starting date (first day of first oruise). For an existing ongoing program please indicate the first oruise that will be included into the PERSEUS activities															ith du	ration 3 d	ave
04/2	04/2012 monthl year													010 GI				
End	month) year Ending date (first day of last cruise). For an existing ongoing program please indicate the last cruise that will be included into the PERSEUS													EF NA	RRAT	IVE O	F CRUIS	E enter sufficient information about the purpose and nature of the cruise so as to provide the context in which the report data were collected.
activ										The	objectiv	e of th	e MED	<u>zoo</u>	daily c	ruises	is to obta	in a bi-monthly times series of physical and biological
12/2 m	013 onth/yea	ar								para	neters	measu	iremen	nts of a	a coast	al don	ain with	up.to.10.stations.in.the.Limassol.Bay. Lexantine.Basin.
		y (monti nd annu:		sonal et	c)					benth	nic fish	stock a	abunda	ance ir	n the w	aters	of the Re	uration cruises is to collect data for the evaluation of the public of Cyprus for the Period 2011-2013. OC-UCY is
				se (num	ber of d	avs app	roximately)											nd analysis.
								he annual cruises the dur	ation is 3 and 10 days	The of in ord	objectiv der to n	es of the	he ann the tra	nual C' anspor	YBO w t of the	ith 3 d AW,	ays dura of the Cy	tion cruises is to collect data along the Longitude of the 33' 00N prus eddy and of the MMJ.
			rruises the duration is 1 day and for the annual cruises the duration is 3 and 10 days If															
RESPONSIBLE LABORATORY enter name and address of the laboratory responsible for coordinating the scientific planning of the cruises																		
the cruses For the bi-monthly and annual 3 days duration:																		
							ERSITY O	OF CYPRUS, OC-UCY										d as part of another project (or expedition) other than PERSEUS, then enter the ing the project.
		BOX 2 CYPRI		10/8	ICOSI	a					ect nar							
										-					tional.	inter	national	: international
		nyal.1				TA: -	ON6	ANCY I TO			dinati							
		MARI Nicosi		VIRO	NMEN	TALC	UNSULT	ANCY LTD			ect nar				2013			
		CYPRI								-						inter	national)	: national
																		L CONSULTANCY LTD
RES cruis		BIBLE	cool	RDINA	TING	SCIEN	TIST enter	name, email and laboratory of	the person in charge of coordinating all the	Proje	ect nar	ne: CY	во					
	cruises For the bi-monthly and annual with duration 3 days:												itution	nal, na	tional,	inter	national)	: national
ema	iii: gzo	orge Z odiac (oulat	is ic.cy						Project type (institutional, national, international): national Coordinating body: <u>QC-UCY</u>								
								SITY OF CYPRUS, OC-U										
		cy LTD		with di	rauon		lays the a	above name in cooperatio	n with the AP Marine Environmental									
1																		
									responsible for the data to be collected on the	_	34	57.24	N		41.88	E	H10	layer using 2 connected nets of 45 µm and 200 µm mesh size. (Caivet type; both 25 cm mouth diameter).
on the	and wh following	io may b g table u	e conta inder th	e colum	further i n headir	nformat ig 'PI', to	on about the identify the	data. (The letter assigned belo data sets for which he/she is re	w, against each Principal Investigator is used, esponsible)	D				33				CTD cast from 0 to 100 m (pressure, temperature, conductivity, depth, sailnity, density).
Α. Υ	IANN/	A SAM	UEL F	RHOA	DS					D	34	55.42	N	33	53.62	E	H10	CTD cast from 0 to 100 m (pressure, temperature, conductivity, depth, salinity, density).
в. о	IORG	OS FY	TTIS							D	34	56.41	N	33	58.88	E	H10	CTD cast from 0 to 100 m (pressure, temperature, conductivity, depth, salinity, density).
c. <u>c</u>	REGO	RY K		RIS						D	34	55.14	N	34	05.07	E	H10	CTD cast from 0 to 100 m (pressure, temperature, conductivity, depth, salinity, density).
D. N	IARIO	<u>s niko</u>	DLAID	ES						D	34	47.16	N	33	34.42	E	H10	CTD cast from 0 to 100 m (pressure, temperature, conductivity, depth, salinity, density).
E	AN H	AYES								D	34	46.32	N	33	33.68	E	H10	CTD cast from 0 to 100 m (pressure, temperature, conductivity, depth, salinity, density).
F. 0	EORG	E ZOI	DIATIS	S (to b	e cond	ucted	for further	information about data)		D	34	45.17	N	33	29.82	E	H10	CTD cast from 0 to 100 m (pressure, temperature, conductivity, depth, salinity, density).
TIME	SERIE	ES DAT	A, MO	DORIN	GS, BO	OTTON	I MOUNT	ED GEAR AND DRIFTIN	G SYSTEMS	D	34	43.47	N	33	27.31	E	H10	CTD cast from 0 to 100 m (pressure, temperature, conductivity, depth, salinity, density).
This se	tion shou	uld be use	ed to rep	ort data t	o be colle	cted at fi	red locations w	which are returned to routinely in or	ler to construct 'time series'.	D	34	41.66	N	33	07.92	E	H10	CTD cast from 0 to 100 m (pressure, temperature, conductivity, depth, salinity, densitiv
This se cruises	ston may Separate	e entries a	ised for i should be	e made for TE POS	moorings or each lo	, bottom cation/sta	mounted gear ation (only depl DATA	and drifting systems (both surface a loyment positions need be given for	and deep) to be deployed and/or recovered during the drifting systems). DESCRIPTION	D	34	41.48	N	33	11.11	E	H10	CTD cast from 0 to 100 m (pressure, temperature, conductivity, depth, salinity,
PI See				1	онапи	рe	TYPE	Identify, as appropriate, the na measured, the number of instr	ture of the instrumentation the parameters (to be) uments and their depths, whether deployed and/or deployments, and any identifiers given to the site (e.g.	D	34	40.56	N	33	08.36	E	H10	Gensity). CTD cast from 0 to 100 m (pressure, temperature, conductivity, depth, salinity,
top of page.	deg	min	N/S	deg	min	EW	Roscop code(s)	recovered, estimated duration of station name, code).	oeproymenta, and any identifiers given to the site (e.g.	D	34	33.19	N	32	57.83	E	H10	density). CTD cast from 0 to 100 m (pressure, temperature, conductivity, depth, salinity,
							from the list on next pages											density).
A, B, C	34	38.00	N	33	03.43	E	H10, B09	CTD cast from 0 to 100 m (pr	essure, temperature, conductivity, depth, salinity, density size measurements1 net haul at the 0-100 m depth	D	34	35.08	N	32	52.22	E	H10	CTD cast from 0 to 100 m (pressure, temperature, conductivity, depth, salinity, density).
								layer using 2 connected nets of	45 µm and 200 µm mesh size. (Calvet type; both 25 cm mouth diameter).	D	34	34.97	N	32	45.41	E	H10	CTD cast from 0 to 100 m (pressure, temperature, conductivity, depth, salinity, density).
A, B, C	34	37.50	N	33	03.43	E	H10, B09	Zooplankton abundance and	assure, temperature, conductivity, depth, salinity, density size measurements 1 net haul at the 0-100 m depth	D	34	35.30	N	32	49.00	E	H10	CTD cast from 0 to 100 m (pressure, temperature, conductivity, depth, salinity, dentivi,
								layer using 2 connected nets of	45 µm and 200 µm mesh size. (Calvet type; both 25 cm mouth diameter).	D	34	35.05	N	33	10.29	E	H10	CTD cast from 0 to 100 m (pressure, temperature, conductivity, depth, salinity,
A, B, C	34	37.00	N	33	03.43	E	H10, B09	Zooplankton abundance and	essure, temperature, conductivity, depth, salinity, density size measurements1 net haul at the 0-100 m depth	D	34	36.24	N	33	14.89	E	H10	density). CTD cast from 0 to 100 m (pressure, temperature, conductivity, depth, sailnity,
_								layer using 2 connected nets of	45 µm and 200 µm mesh size. (Calvet type; both 25 cm mouth diameter).									density).
A, B, C	34	36.50	N	33	03.43	E	H10, B09	-	density density size measurements 1 net haul at the 0-100 m depth	D	34	35.46	N	33	12.65	E	H10	CTD cast from 0 to 100 m (pressure, temperature, conductivity, depth, salinity, density).
						ļ			45 µm and 200 µm mesh size. (Calvet type; both 25 cm mouth diameter).	D	34	36.16	N	33	18.85	E	H10	CTD cast from 0 to 100 m (pressure, temperature, conductivity, depth, salinity, dentivi,
A, B, C	34	36.00	N	33	03.43	E	H10, B09	Zooplankton abundance and	essure, temperature, conductivity, depth, salinity, density alze measurements 1 net haul at the 0-100 m depth	D	34	35.22	N	32	50.83	Е	H10	CTD cast from 0 to 100 m (pressure, temperature, conductivity, depth, salinity,
4.7		20.00		-		-	410 ~~	layer using 2 connected nets of	45 µm and 200 µm mesh size. (Calvet type; both 25 cm mouth diameter). assure, temperature, conductivity, depth, salinity,									density).
A, B, C	34	36.00	N	33	02.63	E	H10, B09	Zooplankton abundance and	density size measurements1 net haul at the 0-100 m depth 45 µm and 200 µm mesh size. (Calvet type; both 25	D	34	38.18	N	32	27.22	E	H10	CTD cast from 0 to 100 m (pressure, temperature, conductivity, depth, salinity, density).
A, B.	34	36.50	N	33	02.63	E	H10, B09		D	34	36.18	N	32	35.17	E	H10	CTD cast from 0 to 100 m (pressure, temperature, conductivity, depth, salinity, density).	
A, B, C								CTD cast from 0 to100 m (pre Zooplankton abundance and siz layer using 2 connected nets of	D	35	04.35	N	32	21.37	E	H10	CTD cast from 0 to 100 m (pressure, temperature, conductivity, depth, salinity, density).	
A, B, C	34	37.00	N	33	02.63	E	H10, B09	cm mouth diameter). CTD cast from 0 to 100 m (pro	D	35	05.22	N	32	27.46	E	H10	CTD cast from 0 to 100 m (pressure, temperature, conductivity, depth, salinity,	
C								Zooplankton abundance and layer using 2 connected nets of	D	35	06.21	N	32	28.85	E	H10	density).	
A, B, C	34	37.50	N	33	02.63	E	H10, B09	CTD cast from 0 to 100 m (pro Zooplankton abundance and size	cm mouth diameter). essure, temperature, conductivity, depth, salinity, density te measurements1 net haui at the 0-100 m depth (45 um and 200 um meas size. (23 uwat thre: hoth 25									CTD cast from 0 to 100 m (pressure, temperature, conductivity, depth, salinity, density).
								layer using 2 connected nets of cm mouth diameter).	to pin and zoo pin moon also. (ourier gpo, boar zo	D	35	04.53	N	34	02.28	E	H10	CTD cast from 0 to 100 m (pressure, temperature, conductivity, depth, salinity, density).
A, B, C	34	38.00	N	33	02.63	E	H10, B09	CTD cast from 0 to 100 m (pro Zooplankton abundance and	essure, temperature, conductivity, depth, salinity, density size measurements1 net haul at the 0-100 m depth	D	34	38.02	N	33	29.17	Е	H10	CTD cast from 0 to 100 m (pressure, temperature, conductivity, depth, salinity, density).
1								and a second and a second and a					- 1					annung.

				L			1	
E,F	34	30.00	N	33	00.00	E	H10	CTD cast from 0 to 1000 m (pressure, temperature, conductivity, depth, salinity density, dissolved oxygen).
E,F	34	25.00	N	33	00.00	E	H10	CTD cast from 0 to 1000 m (pressure, temperature, conductivity, depth, salinity density, dissolved oxygen).
E,F	34	15.00	N	33	00.00	E	H10	CTD cast from 0 to 1000 m (pressure, temperature, conductivity, depth, salinity density, dissolved oxygen).
E,F	34	00.00	N	33	00.00	E	H10	CTD cast from 0 to 1000 m (pressure, temperature, conductivity, depth, salinity density, dissolved oxygen).
E,F	33	45.00	N	33	00.00	E	H10	CTD cast from 0 to 1000 m (pressure, temperature, conductivity, depth, salinity density, dissolved oxygen).
E,F	33	30.00	N	33	00.00	E	H10	CTD cast from 0 to 1000 m (pressure, temperature, conductivity, depth, salinity density, dissolved oxygen).
E,F	33	15.00	N	33	00.00	E	H10	CTD cast from 0 to 1000 m (pressure, temperature, conductivity, depth, salinity density, dissolved oxygen).
E,F	33	00.00	N	33	00.00	E	H10	CTD cast from 0 to 1000 m (pressure, temperature, conductivity, depth, salinity density, dissolved oxygen).

GENERAL OCEAN AREA(S): Enter the names of the oceans and/or seas in which data will be collected during the cruises – please use commonly recognised names (see, for example, International Hydrographic Bureau Special Publication No. 23, 'Lmits of Oceans and Seas'). Levantine Basin

SPECIFIC AREAS: Enter a description of the area(s). Such descriptions may include references to local geographic areas, to sea floor features, or to geographic accordinates. Plants guard here the number of each 5 derate square in which data were collected from the marvdes square list provided at the ead of the document

Levantine Basin Mardsen square 141;1

The Levantine Basin is the largest and deepest as a whole basin in the Mediterranean Sea. The hydrological structure in the Levantine Basin is dominated by cyclonic and anticyclonic eddies, meandering jets, intermediate water formation, upwelling phenomena, etc.

IEO questionnaire on planned cruises

PERSEUS WP3						
R/V PRE-CRUISE PLANNING SUMMARY REPORT		OBJE	CTIVES AND BRI	EF NARRATIVE OF	CRUISE	enter sufficient information about the purpose and nature of the cruise so as to provide the context in which the report data were collected.
CRUISES FREQUENCY, DURATION						
Total number of cruises:		meanin	ngful and distribution	n of phytoplankton and	l zooplank	-time monitoring of physical variables, chemical, biological ton communities in profiles located at special points along the
Starting date (first day of first cruise). For an existing ongoing program please indicate the first PERSEUS activities	t cruise that will be included into the			st . For their achieves at special points in the		ld be made four oceanographic on a quarterly basis, covering transects fediterranean.
03/2012 month/ year						
Ending date (first day of last cruise). For an existing ongoing program please indicate the last of activities	cruise that will be included into the PERSEUS					
06/2015 month/year						
Frequency (monthly, seasonal etc) seasonal		PROJI	ECT (IF APPLICA	BLE) if the cruises are panisation responsible for	designated	as part of another project (or expedition) other than PERSEUS, then enter the no the project.
Duration of each cruise (number of days approximately) 20 days			ct name: RADME			uð sve þreðrær.
		Projec	ct type (institutio	nal, national, intern	ational):	institutional
RESPONSIBLE LABORATORY enter name and address of the laboratory responsible the cruises	for coordinating the scientific planning of	Coord	linating body: IN	STITUTO ESPAÑOL	DE OCI	ANOGRAFIA
Name: INSTITUTO ESPAÑOL DE OCEANOGRAFIA CENTRO OCEANOGR	AFICO DE BALEARES (IEO-COB)	-		TODOLES		
Address: Muelle de Poniente s/n. 07015. Palma de Mallorca, Islas Baleares		cruises a	and who may be conta	cted for further information	on about the	ss of the Principal Investigators responsible for the data to be collected on the a data. (The letter assigned below, against each Principal Investigator is used,
Country: Spain				e column heading PT, to	identity the	data sets for which he/she is responsible)
RESPONSIBLE COORDINATING SCIENTIST enter name, email and laboratory of the	a person in charge of coordinating all the	A. <u>J.</u>	L. López-Jurado			
cruises	person in charge of coordinating all the	B. Ro	osa Balbín			
Name: José Luis López-Jurado		С. <u>М</u> .	. Carmén García-	Martinez		
email: lopez.jurado@ba.ieo.es		D. Fr	ancina Moya			
Laboratory: INSTITUTO ESPAÑOL DE OCEANOGRAFIA - CENTRO OCEAN	IOGRAFICO.DE.BALEARES.(IEO-					
COB)			berto Aparicio			
CHIEF SCIENTIST(S) If already known enter name and laboratory of the person(s) in charge	ge of the scientific work (chief of mission)	F. <u>M</u> a	anuel Vargas-Yai	iez		
during the cruises.		G. <u>M</u> .	Luz Fernandez d	e Puelles		
M. Carmen García-Martinez, INSTITUTO ESPAÑOL DE OCEANOGRAFIA -	CENTRO OCEANOGRAFICO DE					
MALAGA (IEQ-COB)		TIME	SERIES DATA, MO	OORINGS, BOTTOM	MOUNT	ED GEAR AND DRIFTING SYSTEMS
Mariano, Serra Tur, INSTITUTO ESPAÑOL DE OCEANOGRAFIA - CENTRO. (IEO-COB)		This sect	tion may also be used for r	eporting moorings, bottom m	ounted gear a	hich are returned to routinely in ordier to construct 'time series'. and drifting systems (both surface and deep) to be deployed and/or recovered <u>during the</u> syment positions need be given for drifting systems).
José Luis López-Jurado, INSTITUTO ESPAÑOL DE OCEANOGRAFIA - CEI	NTRO OCEANOGRAFICO DE	1		TE POSITION	DATA	DESCRIPTION
BALEARES (IEO-COB)		PI	LATITUDE	LONGITUDE	TYPE	identify, as appropriate, the nature of the instrumentation the parameters (to be

See top of page.	deg	min	NIS	deg	min	EW	enter Roscop code(s) from the list on next pages	measured, the number of instruments and their depths, whether deployed and/or recovered, estimated duration of deployments, and any identifiers given to the site (e.g. station name, code).
A, B							H09	Niskin bottle
A, B							H10	CTD cast
E, B							H21	Dissolved Oxygen
E						<u> </u>	H22	Phosphate
E							H24	Nitrafe
E							H25	Nitrite
E							H26	Silicate
C, D							H27	Alcalinity
C, D							H74	Carbon dioxide
E							B02	Phytoplankton
G		1				<u> </u>	B09	Zooplankton

Station	long. W	long. W	Latitude N	Latitude N	Depth	Roscop Code(s)
	(degree)	(min.)	(degree)	(min.)	(m)	
P1	-4	-44.3580	36	28.2000	30	H09, H10, H22, H24, H25, H26
P2	-4	-44,4960	36	25.4280	130	H09, H10, H22, H24, H25, H26, B02,
P3	-4	-44.5320	36	21.0960	500	H09, H10, H22, H24, H25, H26
P4	-4	-44.4960	36	15.0000	800	H09, H10, H22, H24, H25, H26, B02,
M1				11 2000	44	
M1 M2	4	-24.3480 -21.2160	38 38	41.7600 38.3160	25 75	H09, H10, H22, H24, H25, H26 H09, H10, H22, H24, H25, H26, B02,
M3	-4	-18.6180	36	35.5980	200	H09, H10, H22, H24, H25, H26
M4	-4	-15.8280	36	32.5380	350	H09, H10, H22, H24, H25, H26, B02,
M5	-4	-13.1220	36	29.4900	510	H09, H10, H22, H24, H25, H26
V1	-4	-3.9900	38	44,1180	25	H09, H10, H22, H24, H25, H26
V2	-4	-3.8460	36	41 2500	75	H09, H10, H22, H24, H25, H26, B02,
V3	-4	-3,9000	36	38,2800	300	H09, H10, H22, H24, H25, H26
V4	-4	-3.9000	38	34.2000	490	H09, H10, H22, H24, H25, H26, B02,
S1	-3	-28.092	38	40.746	200	H09, H10, H22, H24, H25, H26
S2	-3	-28.092	36	39.348	300	H09, H10, H22, H24, H25, H26, B02,
53 53	-3	-28.092	36	37 422	500	H09, H10, H22, H24, H25, H26, B02,
55 54	-3	-28.092	36	34.614	700	H09, H10, H22, H24, H25, H26, B02,
S5	-3	-28.092	36	31.722	800	H09, H10, H22, H24, H25, H26, B02, H09, H10, H22, H24, H25, H26
CG1	-2	-9.912	38	42.180	50	H09, H10, H22, H24, H25, H26
CG2	-2	-9.912	36	40.650	75	H09, H10, H22, H24, H25, H26, B02,
CG3	-2	-9.912	36	37.152	100	H09, H10, H22, H24, H25, H26
CG4	-2	-9.912	36	29.826	700	H09, H10, H22, H24, H25, H26, B02,
CG5	-2	-9.912	36	25.332	1200	H09, H10, H22, H24, H25, H26
CP1	0	-45.45	37	33.012	50	H09, H10, H22, H24, H25, H26
CP2	ŏ	-45.45	37	29,790	100	H09, H10, H22, H24, H25, H26, B02,
CP3	ŏ	-45.45	37	27.366	600	H09, H10, H22, H24, H25, H26, B02,
CP4	ă	-45.45	37	22.368	2100	H09, H10, H22, H24, H25, H26, B02,

Station	long. E	long. E	Latitude N	Latitude N	Depth	Roscop Code(s)
	(degree)	(min.)	(degree)	(min.)	(m)	
1	2	24.000	39	30.000	78	H10
2	2	19.002	39	27,198	98	H09, H10, H22, H24, H25, H26
3	2	13.998	39	24.798	117	H10
4	2	09.000	39	22.002	131	H09, H10, H22, H24, H25, H26
5	2	04.002	39	19.398	479	H10
6	1	58,800	39	16 602	629	H09, H10, H22, H24, H25, H26
7	1	53,598	39	13.800	638	H10
8	1	48,498	39	11.202	530	H09, H10, H22, H24, H25, H26
9	1	43.200	39	08.202	290	H10
10	1	37,902	39	05.400	78	H09, H10, H22, H24, H25, H26
11	1	10.200	38	52,200	108	H10
12	1	04.002	38	52.200	129	H09, H10, H22, H24, H25, H26
13	ó	58.800	38	52,200	450	H10
14	ŏ	52.200	38	62.200	677	H09, H10, H22, H24, H25, H26
15	Ö	45.402	38	52.200 52.200	840	H10 H10, H22, H24, H20, H20
10	ŏ	39,402	38	52.200	764	H09, H10, H22, H24, H25, H26
17	0	33.300	38	52.200	670	H10
17	0	27.000	38	52.200	315	H09, H10, H22, H24, H25, H26, B02,B09
18	0	20.598	38	52.200	130	H09, H10, H22, H24, H25, H26, B02, B09 H10
20	0	14.598	38	52.200	96	H09, H10, H22, H24, H25, H26, B02, B09
20	0	08.802	38	52.200	30	H09, H10, H22, H24, H25, H26, B02, B09 H10
21	0	16.200	38	56,700	30	HIU
22	0	23.802	38	01.398	500	
23	0	23.802	39	01.398	1070	H10
24						H10
25 26	0	39.102	39 39	10.698	1260	H10
20	0	48.402	39	07.998	1120	H10
		57.498		05.202	817	H10
28	1	06.498	39	02.400	285	H10
29	1	12.198	39	00.500	110	H10
30	1	32.802	39	08.202	89	H10
31	1	36.498	39	15.000	525	H10
32	1	40.200	39	21.798	915	H10
33	1	43.998	39	28.602	1373	H10
34	1	53.802	39	29.502	1231	H10
35	2	03.402	39	30.000	557	H10
36	2	13.002	39	30.798	108	H10
37	2	19.698	39	31.200	89	H10
B1	2	25.630	39	28.602	75	H09, H10, H22, H24, H25, H26, B02, B09
B2	2	25.602	39	24.430	100	H09, H10, H22, H24, H25, H26, B02, B09
B3	2	25.900	39	20.300	200	H09, H10, H22, H24, H25, H26, B02, B09
		-	-			
317	3	10.260	39	00.000	2315	H10
MH1	4	21,498	39	52.002	75	H09, H10, H22, H24, H25, H26
MH2	4	25.002	39	57.000	295	H09, H10, H22, H24, H25, H26, B02, B09
MH3	4	30.000	40	03.498	1765	H09, H10, H22, H24, H25, H26
MH4	4	34.962	40	10.002	2400	H09, H10, H22, H24, H25, H26, B02, B09
		2002			2.00	
T1	0	52.248	40	30,198	50	H09, H10, H22, H24, H25, H26
T2	1	03.882	40	28,770	80	H09, H10, H22, H24, H25, H26, B02, B09
T3	1	15.828	40	27.390	100	H09, H10, H22, H24, H25, H26
T4		36.000	40	25.902	940	H09, H10, H22, H24, H25, H26, B02, B09
19		30.000	-10	20.802	e-tu	Hue, HT0, Haz, Ha+, H20, H20, B02, B08
BNA1	2	12.600	41	19.242	75	H09, H10, H22, H24, H25, H26
BNA1 BNA2	2	12.000	41	19.242		H09, H10, H22, H24, H25, H26, H20 H09, H10, H22, H24, H25, H26, B02,B09
	2		41		295	
BNA3 BNA4	2	24.648	41	10.000		H09, H10, H22, H24, H25, H26 H09, H10, H22, H24, H25, H26, B02, B09
	2	31.170			1320	
BNA5	2	37.680	41	00.000	1670	H09, H10, H22, H24, H25, H26

GENERAL OCEAN AREA(S): Enter the names of the oceans and/or seas in which data will be collected during the cuises – please use commonly recognised names (see, for example, International Hydrographic Bureau Special Publication No. 23, 'Limits of Oceans and Seas'). Western Mediterranean, Alboran Sea, Algerian Basin, Balearic Sea

SPECIFIC AREAS: Enter a description of the area(s). Such descriptions may include references to local geographic areas, to sea floor features, or to geographic coordinates. Please meet bere the number of ench 5 derive square in which data were collected from the mandea square list provided at the end of the document

Balearic Sea: 180;3 Algerian Basin: 144;1 Alboran Sea: 109;1 Alboran Sea: 109;2

ł

CNRS questionnaire on planned cruises

	:	R/V P	RE-CR			EUS W NING		RY REPORT		OBJECTIVES AND BRIEF NARRATIVE OF CRUISE enter sufficient information about the purpose and nature of the cruise so as to provide the context in which the report data were collected.
										The main objective of the "Mediterranean Ocean Observing System on Environment" (MOOSE) is to observe the
	SES F				ATIO	N				long-term evolution of the NW Mediterranean Sea in the context of the climate change and anthropogenic pressure (over > 10 yrs) in order to be able to detect and identify long-term environmental trend and anomalies of the marine ecosystem. In this context, MOOSE aims to build an integrated and multi-disciplinary observing system in the NW Mediterranean Sea in relation to scientific issues raised in the context of the 'Mediterranean Integrated STudies a
Starti	ing da	te (first	day of f	irst cruis	se). For	an exist	ing ongoing	program please indicate the fin	st cruise that will be included into the PERSEUS	Regional And Local Scales" (MISTRALS) international program.
activitie										Integrated and multi-scale observation networks must include both high frequency monitoring and near real-time measurements capabilities in order to precisely document the broad spectrum of temporal and spatial scales involved and to rely it on the main circulation features already identified (basin scale gyres, eddies, biogeochemica
Ending date (first day of last oruise). For an existing ongoing program please indicate the last cruise that will be included into the PERSEUS activities <u>12/2015</u>								program please indicate the last	t cruise that will be included into the PERSEUS	provinces). Measurements at high vertical and temporal resolutions can be performed by eulerian observatories bu the deployments of an array of tations lessen their impact due to the poor patial resolution possible. Synergies with other components (ships, floats, gliders) are prerequisites for the establishment of such an ocean observing system for maximizing data coverage in space and time and with respect to the observed flow and processes. Presently
12/20 mon	<u>15</u> nth/ year									MOOSE is combining eulerian observatories, autonomous mobile platforms (profilers, gliders) and research vessels.
Frequ Banyuls decideo	s s/Mer)	(monthi , ANNU	y, seaso AL for N	nal etc) IOOSE-	MONTH GE. The	HLY for I e progra	MOOSE-DY m MOOSE-((F (off Villefranche s/Mer), MOC GE could evolve toward a seas	DSE-ANT (off-Toulon) and MOOSE-MOL (off onal (automn/spring) survey, but this is not	The eulerian observation is organized in four mooring sites in which a ship survey - which are the subject of this report - is performed on a regular basis, either monthly or annually : - LION (hydrodynamic sensors and sediment traps) in the convective zone of Gulf of Lion (since 2007, CEFREM,
Durat	tion of	feach	cruise	ê (numb	er of da	ys appro	oximately) 1	day for the monthly cruises, 18	days for MOOSE-GE	 DCCEAN, Hydrochames actions and the second state of the second state of control contented control control control control control control control
RESP	PONSI	BLE L	ABOR	ATOR	RY en the	nter nam e cruises	e and addre	ess of the laboratory responsible	e for coordinating the scientific planning of	 ArtifArcE3 in the notif western content ontario inform robio/ input/dynamic series in team the boottom, for hydrodynamic and organic matter remineratization in deep water (since 2004, MIO, Eurosites). The monthly sith survey of this site is referred to as MOOSE-ANT. MOLA in the western part of the Gulf of Lions of the marine station in Banyuls, devoted to the bacterial diversity in
							ceanogra			relation to the variability of the hydrology (since 2003, OOB). The monthly ship survey of this site is referred to as MOOSE-MOL.
	ess: C try: Fl				r. 48	9.301.	.19499.M	ARSEILLE Cedex 09		In addition to the survey of the LION site, the annual MOOSE-GE campaign performs deep CTDs transects which
RESP cruises	ONSI	BLE C	OOR	DINAT	ING S	CIENT	IST enter r	name, email and laboratory of t	he person in charge of coordinating all the	allows to map the circulation in the North Gyre(Northern Current, western Corsica current, North Balearic front and key convection areas in the middle of the North Gyre).
	e: Patr	ick Ra	aimbai	ilt						PROJECT (IF APPLICABLE) if the cruises are designated as part of another project (or expedition) other than PERSEUS, then enter the
	: Patri		imbau	lt@Ur	nivme	d.Fr				PROJECT (IF APPLICADLE) if the druses are designated as part or another project (or expectition) other than <u>PERSEUS</u> , then enter the name of the project, and of organisation responsible for co-ordinating the project.
Labor	ratory	: MIO								Project name: MOOSE (Mediterranean Ocean Observing System on Environment)
CHIE	FSCIE	ENTIS	T(S)	fairead	y know	n enter r	ame and Ial	boratory of the person(s) in cha	arge of the scientific work (chief of mission) during	Project type (institutional, national, international): <u>National</u>
the crui			OCE	NN for	- MOO	SE-GI	- cruises			Coordinating body: MSU/CNRS
Laure	ent CO	PPOL	. <mark>A, L</mark> O	V, for	MOOS	SE-DY	F cruises	3.		
lan S/	ALTER	R. LOI	MIC, fo	r MOG	DSE-M	IOL CI	uises			
cruises a on the fo	and who ollowing	may be table ur	e contac nder the	ted for f	: Enter further in headin	the nam nformati g 'PI', to	e and addre on about the identify the	ess of the Principal Investigato e data. (The letter assigned be e data sets for which he/she is i	rs responsible for the data to be collected on the low, against each Principal Investigator is used, responsible)	
A. Pa	trick.	RAIM	BAULT	[Inst	itut.Me	éditen	anéen d'	'Océanologie campus	a.de Luminy 162.Avde Luminy.	
13	288 M	ARSE	ILLE	CEDE	<u>X09</u>					
B. Do	minig	ue LE	FEVR	E. Ins	titut N	lédite	rranéen o	d'Océanologie - campu	is de Luminy , 162 Av. de Luminy,	
<u>13</u>	288 M	ARSE	ILLE	CEDE	<u>X09</u>					
									entations et approches numériques,	
								ARIS CEDEX05		GENERAL OCEAN AREA(S): Enter the names of the coeans and/or seas in which data will be collected during the cruises – please use commonly recognised names (see, for example, International Hydrographic Bureau Special Publication No. 23, 'Limits of Oceans and Seas').
									bservatoire.Océanologique, 181,	commonly recognised names (see, for example, international Hydrographic Bureau Special Publication No. 23, 'Limits of Uceans and Seas'). 28A. Med. Sea - Western Basin
								HE SUR MER CEDEX4		
E. lar F		ICK.	Lapor	core	mago	· - AVE	auve au P	Fontaulé - 66650 BANY	<u>wra.2985.mer</u> .	SPECIFIC AREAS: Enter a description of the area(s). Such descriptions may include references to local geographic areas, to sea floor features, or to geographic coordinates. Please issues there the number of each 3 dezme square is which data wave collected from the mandes square list provided at the end of the
TIME S	SERIE	S DAT	A, MO	ORIN	GS, BC	OTTON	I MOUNT	TED GEAR AND DRIFTE	NG SYSTEMS	document
										Northwestern Mediterranean Sea
rms secti <u>cruises</u> , S	Separate	entries s	hould be			cationista		pioyment positions need be given f	order to construct 'time series'. e and deep) to be deployed and/or recovered <u>during the</u> for drifting systems).	Marsden square : 180;1 and 180;2 The area several by the MOCCE strikes is the se called "Marthem Cure" which assessment the Liquide Sec to the
PI See	ų		KOXIMAT	re posit L(TION PNGITUS	ρE	DATA TYPE enter	Identify, as appropriate, the measured, the number of instructured estimated durations	DESCRIPTION nature of the instrumentation the parameters (to be) truments and their depths, whether deployed and/or if deployments and any identifiance dues to the sterie (e.g.	The area covered by the MOUSE cruises is the so called "Northern Gyre" which encompass the Ligurian Sea to the East, Gulf of Lions and the Provencal Basin in the centre and the Balearic Sea to the West. In addition to the stations listed above in the culerian sites, ~ 80 hydrographic stations with CTD and water sampling (nutrients, dissolved
top of page.	deg	min	N/S	deg	min	EW	Roscop code(s) from the	station name, code).	f deployments, and any identifiers given to the site (e.g.	inorganic carbon, chlorophyll and pigments) are performed in the Northern Gyre.
							list on next pages			
D	43 43	24 24	N N	7	53 53	E	H10 H09	conductivity, ox	cast from 0 to bottom (pressure, temperature, ygen, fluorescence, light transmission) n bottle (see full description of sampling below)	
в	43	48	N	6	10	E	H10	Station ANTARES, CTD	cast from 0 to bottom (pressure, temperature, ygen, fluorescence, light transmission)	
в	42	48	N	6	10	E	H09	Station ANTARES. Niskin	n bottle (see full description of sampling below)	
c	42 42	04 04	N N	4	39 39	E	H10 H09	oxygen, f	n 0 to bottom (pressure, temperature, conductivity, luorescence, light transmission)	
E	42	04 27	N	4	39	E	H09 H10		ottle (see full description of sampling below) m 0 to bottom (pressure, temperature, conductivity,	

 C
 42
 04
 N
 4
 35
 E
 H99
 Station LOK Issish bottle see Au description of sampling below)

 E
 42
 27
 N
 3
 33
 E
 H10
 Station MAL. To cast from to bottom (snews), imperature, conductivity, oxygen, Noreseensk signt transmission

 E
 42
 27
 N
 3
 33
 E
 H10
 Station MAL. To cast from to bottom (snews), imperature, conductivity, oxygen, Noreseensk signt transmission

 E
 42
 27
 N
 3
 33
 E
 H109
 Station MAL. Noreseensk signt transmission

- 46 -

CNR ISMAR questionnaire on planned cruises

	OBJE	ECTIV	ES AND	BRI	EF NA	RRATI	VEO	F CRUISE enter as to	sufficient information about the purpose and nature of the cruise so provide the context in which the report data were collected.
	sectio	ons, clo	osina sub	o-vol	umes d	of the b	asin.	following a box-n	sin-scale surveys through hydrographic multidisciplinary nodel approach to allow budget computations of mass, salt, he
	- and b	spond	to the CO	prop ORS	erties ICA, C	The Li 01 and	guria C02	n section crosses moorings, respe	the DYFAMED position. The Corsica and Sicily sections tively. This survey has already been carried out in 2005, 2004 and coordinated with the annual MOOSE cruise.
PERSEUS WP3	2007	and 2	08. Dun	ing P	ERSE	USITW	ill be	effected one time	and coordinated with the annual MOOSE cruise.
R/V PRE-CRUISE PLANNING SUMMARY REPORT									
	_								
ISES FREQUENCY, DURATION									
I number of cruises: 1									
ting date (first day of first cruise). For an existing ongoing program please indicate the first cruise that will be included into the PERSEUS activition of the terms of ter		IECT		10.45					
014 onthi year	Proje	ect nar	(IF APPL ne: nn	ICA:	DLC)				
ing date (first day of last cruise). For an existing ongoing program please indicate the last cruise that will be included into the PERSEUS activitie 014	³ Proje	ect typ	e (institu	ution	nal, na	tional,	interr	national): institu	tional
nth/ year	Coor	rdinati	ng body:	: nn					
UENCY (monthly, seasonal etc)	PRIN		. INVEST		TORS	: Enter the	ne nam	e and address of the	Principal Investigators responsible for the data to be collected on the cruise assigned below, against each Principal Investigator is used, on the following
tion of each cruise (number of days approximately)	table u	under the	e column he	eading	g 'PI', to	identify t	he data	sets for which he/sh	e is responsible)
			I SCHRO D BORG						
PONSIBLE LABORATORY			NIA SPA			A			
e: CNR ISMAR U.O.S. Pozzuolo di Lerici			/ETRAN						
ress: <u>Forte S.Teresa Pozzuolo di Lerici 19036 La Spezia</u> ntry: I <u>TALY</u>			ISA GRI						
	F. g	AROL	INA CAI	NTO	NI				
PONSIBLE COORDINATING SCIENTIST e: KATRIN SCHROEDER			A AMPO						
il: katrinachredet@ismar.cnr.it pratory: <u>CNR ISMAR Venezia</u>	TIME	E SERIE	ES DATA						AR AND DRIFTING SYSTEMS
EF SCIENTIST(S) If already known enter name and laboratory of the person(s) in charge of the scientific work (chief of mission) during the	This se This se Separa	ction sho ction may ite entries	ald be used to also be use should be m	to repo id for n hade fo	ent data to eporting r or each lo	be collect moorings, l cation/stat	ed at fix bottom r lon (ont	ed locations which are in mounted gear and driftin v deployment positions i	eturned to multinely in order to construct "time series". g systems (both surface and deep) to be deployed and/or recovered <u>during the cruises</u> , reed be given for drifting systems).
5.	PI		APPRO: ATITUDE	XIMAT	E POSIT			DATA TYPE enter Roscop	DESCRIPTION Identify, as appropriate, the nature of the instrumentation the parameters (to measured, the number of instruments and their depths, whether deployed at
ENO BORGHINI no.borghini@sp.ismar.cnr.it	See top of page.	deg	min	Ņ	deg	min	E/ W	code(s) from the list on next pages	recovered, estimated duration of deployments, and any identifiers given to the site station name, code).
ISMAR La Spezia	A,B	1	55,8	N	41	12	E	H09, H10, H21	
	A,B	2	4,14	N	41	0,6	E	H09, H10, H21	temperature, conductivity, oxygen, fluorescence) Station b02 , CTD cast from 0 to bottom (pressure,
	A,B	2	12,12	N	40	49,2	E	H09, H10, H21	temperature, conductivity, oxygen, fluorescence) Station b03, CTD cast from 0 to bottom (pressure,
									temperature, conductivity, oxygen, fluorescence)
2 21,18 N 40 36 E H09, H10, H21 Station b04, CTD cast from 0 to bottom (pressure,									temperature, conductivity, oxygen, fluorescence)
2 29,58 N 40 24 E H09, H10, H21 Station b05, CTD cast from 0 to bottom (pressure,	A,B	6	59,88	N	39	48	E	H09, H10, H21	Station s14, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence)
2 38,4 N 40 12 E H09, H10, H21 Station b06, CTD cast from 0 to bottom (pressure,	A,B	7	23,82	N	39	48	E	H09, H10, H21	Station s16, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence)
2 46,14 N 40 0 E H09, H10, H21 Station b07, CTD cast from 0 to bottom (pressure,	А,В	7	48,96	N	39	48	E	H09, H10, H21	Station s18, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence)
2 49,86 N 39 54,6 E H09, H10, H21 Station b08, CTD cast from 0 to bottom (pressure,	A,B	7	59,88	N	39	48	E	H09, H10, H21	Station s19, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence)
3 0 N 39 12 E H09, H10, H21 Station d1, CTD cast from 0 to bottom (pressure,	А,В	8	12,24	N	39	48	E	H09, H10, H21	Station s20, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence)
3 0,12 N 39 0 E H09,H10,H21 Station d2, CTD cast from 0 to bottom (pressure,	A,B	8	4,56	N	39	48	E	H09, H10, H21	Station s22, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence)
3 0,24 N 38 48,6 E H09, H10, H21 Station 42, CH Cast from 0 to bottom (pressure,	A,B	4	32,34	N	39	49,2	E	H09, H10, H21	Station s23, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence)
temperature, conductivity, oxygen, fluorescence)	A,B	5	48,06	N	42	53,4	E	H09, H10, H21	Station I2, CTD cast from 0 to bottom (pressure,
3 0,24 N 38 24 E H09, H10, H21 Station d5, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence)	A,B	5	36,6	N	42	48,6	E	H09, H10, H21	temperature, conductivity, oxygen, fluorescence) Station I3, CTD cast from 0 to bottom (pressure,
3 0,24 N 38 0 E H09, H10, H21 Station d7, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence)	A,B	5	24,3	N	42	45	E	H09, H10, H21	temperature, conductivity, oxygen, fluorescence) Station I4, CTD cast from 0 to bottom (pressure,
3 0,24 N 37 48 E H09, H10, H21 Station d8, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence)	A,B	5	11,4	N	42	40,8	E	H09, H10, H21	temperature, conductivity, oxygen, fluorescence) Station I5, CTD cast from 0 to bottom (pressure,
3 0,24 N 37 24 E H09, H10, H21 Station d10, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence)	A,B	4	59,7	N	42	35,4	E	H09, H10, H21	temperature, conductivity, oxygen, fluorescence) Station I6, CTD cast from 0 to bottom (pressure,
3 0,42 N 37 1,2 E H09, H10, H21 Station d12, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence)	A,B	4	48,18		42	31,2	E	H09, H10, H21	temperature, conductivity, oxygen, fluorescence) Station 17, CTD cast from 0 to bottom (pressure,
8 47,94 N 38 47,4 E H09, H10, H21 Station d13, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence)	A,B	4	35.28	N	42	27	E	H09, H10, H21	temperature, conductivity, oxygen, fluorescence) Station I8. CTD cast from 0 to bottom (pressure,
8 48 N 38 35,4 E H09, H10, H21 Station d14, CTD cast from 0 to bottom (pressure,									temperature, conductivity, oxygen, fluorescence)
8 48 N 38 23,4 E H09, H10, H21 Station d15, CTD cast from 0 to bottom (pressure,	A,B	4	24,18		42	22,8	E		Station I9, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence)
8 48 N 38 11,4 E H09, H10, H21 Station d16, CTD cast from 0 to bottom (pressure,	A,B	4	12		42	17,4	E	H09, H10, H21	Station I10, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence)
8 48 N 38 0,6 E H09, H10, H21 Station d17, CTD cast from 0 to bottom (pressure,	А,В	4	1,08	N	42	15	E	H09, H10, H21	Station I11, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence)
8 48 N 37 48 E H09, H10, H21 Station d18, CTD cast from 0 to bottom (pressure,	А,В	3	47,4	N	42	8,4	E	H09, H10, H21	Station I12, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence)
	A,B	3	34,98	N	42	4,2	E	H09, H10, H21	Station I13, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence)
temperature, conductivity, oxygen, fluorescence)		3	22,92	N	42	0	E	H09, H10, H21	Station I14, CTD cast from 0 to bottom (pressure,
8 47,94 N 37 36 E H09, H10, H21 Station d19, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence)	A,B								
8 47,94 N 37 36 E H09,H10,H21 Station d19, CT0 cast from 0 to bothom (pressure, temperature, conductivity, oxygen, fluorescence) 4 24,18 N 39 48 E H09,H10,H21 Station s1, CT0 cast from 0 to bothom (pressure, temperature, conductivity, oxygen, fluorescence)	A,B A,B	7	39,48	N	43	45	E	H09, H10, H21	temperature, conductivity, oxygen, fluorescence) Station 900, CTD cast from 0 to bottom (pressure,
8 47,94 N 37 36 E H09,H10,H21 Station d19,CT0 cast from 0 to bothom (pressure, temperature, conductivity, oxygen, fluorescence) 4 24,18 N 39 48 E H09,H10,H21 Station s1, CT0 cast from 0 to bothom (pressure, temperature, conductivity, oxygen, fluorescence) 4 24,18 N 39 48 E H09,H10,H21 Station s1, CT0 cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence) 4 35,1 N 39 49,2 E H09,H10,H21 Station s2, CT0 cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence)			39,48 42,96	N	43 43	45 41,4	E	H09, H10, H21 H09, H10, H21	
Image: Conductivity oxygen, fluorescence) 8 47,94 N 37 36 E H09,H10,H21 Station d19, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence) 4 24,18 N 39 48 E H09,H10,H21 Station s1, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence) 4 35,1 N 39 49,2 E H09,H10,H21 Station s2, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence) 4 59,76 N 39 48 E H09,H10,H21 Station s2, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence)	А,В							H09, H10, H21	Station 900, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence)
Image: Construction of the state o	A,B A,B A,B	7 7 7	42,96 46,98	N	43 43	41,4 37,2	E	H09, H10, H21 H09, H10, H21	Station 900, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence) Station 901, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence) Station 902, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence)
Image: Constraint of the state of	A,B A,B A,B A,B	7 7 7 7 7	42,96 46,98 50,1	N N N	43 43 43	41,4 37,2 33,6	E	H09, H10, H21 H09, H10, H21 H09, H10, H21	Station 900, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence) Station 901, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence) Station 902, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence) Station 903, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence)
Emperature, conductivity, oxygen, fluorescence) 8 47,94 N 37 36 E H09, H10, H21 Station d19, CT0 cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence) 4 24,18 N 39 48 E H09, H10, H21 Station d19, CT0 cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence) 4 35,1 N 39 49,2 E H09, H10, H21 Station s2, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence) 4 59,7 N 39 48 E H09, H10, H21 Station s4, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence) 4 59,76 N 39 48 E H09, H10, H21 Station s4, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence) 5 24,24 N 39 48 E H09, H10, H21 Station s5, CTD cast from 0 to bottom (pressure, secure)	A,B A,B A,B	7 7 7	42,96 46,98	N N N	43 43	41,4 37,2	E	H09, H10, H21 H09, H10, H21	Station 900, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence) Station 901, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence) Station 902, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence) Station 903, CTD cast from 0 to bottom (pressure,

A,B	8	6	Ν	43	17,4	E	H09, H10, H21	Station 906, CTD cast from 0 to bottom (pressure,									temperature, conductivity, oxygen, fluorescence)
								temperature, conductivity, oxygen, fluorescence)	A,B	10	52,14	N	38	31,8	E	H09, H10, H21	Station 225, CTD cast from 0 to bottom (pressure,
A,B	8	13,98	Ν	43	9	E	H09, H10, H21	Station 907, CTD cast from 0 to bottom (pressure,									temperature, conductivity, oxygen, fluorescence)
								temperature, conductivity, oxygen, fluorescence)	A,B	11	4,68	N	38	28,2	E	H09, H10, H21	Station 223, CTD cast from 0 to bottom (pressure,
A,B	8	21,96	Ν	43	1,2	E	H09, H10, H21	Station 908, CTD cast from 0 to bottom (pressure,									temperature, conductivity, oxygen, fluorescence)
								temperature, conductivity, oxygen, fluorescence)	A,B	11	14,76	Ν	38	22,8	E	H09, H10, H21	Station 221, CTD cast from 0 to bottom (pressure,
A,B	8	30	Ν	42	51,6	E	H09, H10, H21	Station 909, CTD cast from 0 to bottom (pressure,									temperature, conductivity, oxygen, fluorescence)
								temperature, conductivity, oxygen, fluorescence)	A,B	11	20,34	N	38	20,4	E	H09, H10, H21	Station 220, CTD cast from 0 to bottom (pressure,
A,B	8	34,02	Ν	42	48	E	H09, H10, H21	Station 910, CTD cast from 0 to bottom (pressure,									temperature, conductivity, oxygen, fluorescence)
								temperature, conductivity, oxygen, fluorescence)	A,B	11	25,38	Ν	38	18,6	E	H09, H10, H21	Station 219, CTD cast from 0 to bottom (pressure,
A,B	8	37,98	Ν	42	43,2	E	H09, H10, H21	Station 911, CTD cast from 0 to bottom (pressure,									temperature, conductivity, oxygen, fluorescence)
								temperature, conductivity, oxygen, fluorescence)	A,B	11	31,86	N	38	13,8	E	H09, H10, H21	Station 218, CTD cast from 0 to bottom (pressure,
A,B	8	40,86	Ν	42	40,2	E	H09, H10, H21	Station 912, CTD cast from 0 to bottom (pressure,									temperature, conductivity, oxygen, fluorescence)
								temperature, conductivity, oxygen, fluorescence)	A,B	11	40,02	Ν	38	10,8	E	H09, H10, H21	Station 217, CTD cast from 0 to bottom (pressure,
A,B	8	43,5	Ν	42	37,2	E	H09, H10, H21	Station 913, CTD cast from 0 to bottom (pressure,									temperature, conductivity, oxygen, fluorescence)
								temperature, conductivity, oxygen, fluorescence)	A,B	11	43,02	N	38	9	E	H09, H10, H21	Station 216, CTD cast from 0 to bottom (pressure,
A,B	10	26,16	Ν	43	1,8	E	H09, H10, H21	Station 100, CTD cast from 0 to bottom (pressure,									temperature, conductivity, oxygen, fluorescence)
								temperature, conductivity, oxygen, fluorescence)	A,B	11	45,96	N	38	9	E	H09, H10, H21	Station 215, CTD cast from 0 to bottom (pressure,
A,B	10	20,28	Ν	43	1,8	E	H09, H10, H21	Station 101, CTD cast from 0 to bottom (pressure,									temperature, conductivity, oxygen, fluorescence)
								temperature, conductivity, oxygen, fluorescence)	A,B	11	50,76	N	38	7,2	E	H09, H10, H21	Station 214, CTD cast from 0 to bottom (pressure,
A,B	10	16,14	Ν	43	1,8	E	H09, H10, H21	Station 102, CTD cast from 0 to bottom (pressure,									temperature, conductivity, oxygen, fluorescence)
								temperature, conductivity, oxygen, fluorescence)	A,B	11	57,42	N	38	5,4	E	H09, H10, H21	Station 213, CTD cast from 0 to bottom (pressure,
A,B	10	11,4	Ν	43	2,4	E	H09, H10, H21	Station 103, CTD cast from 0 to bottom (pressure,									temperature, conductivity, oxygen, fluorescence)
								temperature, conductivity, oxygen, fluorescence)	A,B	12	5,88	N	38	3	E	H09, H10, H21	Station 212, CTD cast from 0 to bottom (pressure,
A,B	10	5,64	Ν	43	1,8	E	H09, H10, H21	Station 104, CTD cast from 0 to bottom (pressure,									temperature, conductivity, oxygen, fluorescence)
								temperature, conductivity, oxygen, fluorescence)	A,B	11	18,24	N	37	10,8	E	H09, H10, H21	Station 410, CTD cast from 0 to bottom (pressure,
A,B	9	58,86	Ν	43	2,4	E	H09, H10, H21	Station 105, CTD cast from 0 to bottom (pressure,									temperature, conductivity, oxygen, fluorescence)
								temperature, conductivity, oxygen, fluorescence)	A,B	11	23,76	Ν	37	13,8	E	H09, H10, H21	Station 436, CTD cast from 0 to bottom (pressure,
A,B	9	52,92	Ν	43	1,8	E	H09, H10, H21	Station 106, CTD cast from 0 to bottom (pressure,									temperature, conductivity, oxygen, fluorescence)
								temperature, conductivity, oxygen, fluorescence)	A,B	11	25,98	N	37	13,8	E	H09, H10, H21	Station 437, CTD cast from 0 to bottom (pressure,
A,B	9	46,14	Ν	43	1,8	E	H09, H10, H21	Station 107, CTD cast from 0 to bottom (pressure,									temperature, conductivity, oxygen, fluorescence)
								temperature, conductivity, oxygen, fluorescence)	A,B	11	29,16	N	37	16,8	E	H09, H10, H21	Station 460, CTD cast from 0 to bottom (pressure,
A,B	9	41,94	Ν	43	1,8	E	H09, H10, H21	Station 108, CTD cast from 0 to bottom (pressure,									temperature, conductivity, oxygen, fluorescence)
						-		temperature, conductivity, oxygen, fluorescence)	A,B	11	33,78	Ν	37	18,6	E	H09, H10, H21	Station 462, CTD cast from 0 to bottom (pressure,
A,B	9	38,52	Ν	43	1,8	L F	H09, H10, H21	Station 109, CTD cast from 0 to bottom (pressure,									temperature, conductivity, oxygen, fluorescence)
	9			43				temperature, conductivity, oxygen, fluorescence)	A,B	11	35,88	N	37	20,4	E	H09, H10, H21	Station 451, CTD cast from 0 to bottom (pressure,
A,B	9	36,06	Ν	45	1,8	-	H09, H10, H21	Station 110, CTD cast from 0 to bottom (pressure,									temperature, conductivity, oxygen, fluorescence)
		04.05		40		-		temperature, conductivity, oxygen, fluorescence)	A,B	11	39,72	N	37	22,2	E	H09, H10, H21	Station 463, CTD cast from 0 to bottom (pressure,
A,B	9	31,86	Ν	43	1,2	1 5	H09, H10, H21	Station 111, CTD cast from 0 to bottom (pressure,									temperature, conductivity, oxygen, fluorescence)
								temperature, conductivity, oxygen, fluorescence)	A,B	11	44,58	Ν	37	25,2	E	H09, H10, H21	Station 434, CTD cast from 0 to bottom (pressure,
A,B	9	47,22	Ν	39	0,6	E	H09, H10, H21	Station 291, CTD cast from 0 to bottom (pressure,									temperature, conductivity, oxygen, fluorescence)
A.B	9	52.2	N	38	58.2	-	H09, H10, H21	temperature, conductivity, oxygen, fluorescence)	A,B	11	49,68	N	37	27,6	E	H09, H10, H21	Station 438, CTD cast from 0 to bottom (pressure,
А,В	9	52,2	N	58	58,2	1	H09, H10, H21	Station 281, CTD cast from 0 to bottom (pressure,									temperature, conductivity, oxygen, fluorescence)
A,B	10	0.9	N	38	54,6	5	H09, H10, H21	temperature, conductivity, oxygen, fluorescence) Station 261, CTD cast from 0 to bottom (pressure,	A,B	11	55,44	N	37	30,6	E	H09, H10, H21	Station 433, CTD cast from 0 to bottom (pressure,
м, о	10	0,9	IN .	- 20	54,0	<u>-</u>	109, 110, 121										temperature, conductivity, oxygen, fluorescence)
A.B	10	10.98	N	38	51.6	-	H00 H10 H21	temperature, conductivity, oxygen, fluorescence)	A,B	12	0,36	N	37	35,4	E	H09, H10, H21	Station 406, CTD cast from 0 to bottom (pressure,
А,В	10	10,98	N	58	51,6	1	H09, H10, H21	Station 241, CTD cast from 0 to bottom (pressure, temperature, conductivity, oxygen, fluorescence)									temperature, conductivity, oxygen, fluorescence)
A,B	10	15.48	N	38	48.6	5	H09, H10, H21	Station 231, CTD cast from 0 to bottom (pressure,	A,B	12	8,64	N	37	39	E	H09, H10, H21	Station 405, CTD cast from 0 to bottom (pressure,
A,D	10	15,48	N	20	48,0	•	109, H10, H21	temperature, conductivity, oxygen, fluorescence)									temperature, conductivity, oxygen, fluorescence)
A.B	10	29,64	N	38	43,2	-	H09, H10, H21	Station 229, CTD cast from 0 to bottom (pressure,									
A,D	10	29,04	IN	20	45,2	٢	109, 110, 121	temperature, conductivity, oxygen, fluorescence)									
A,B	10	41.04	N	38	37.8	F	H09, H10, H21	Station 227. CTD cast from 0 to bottom (pressure.									
м,о	10	41,04	14	30	51,6	1 4	100, 110, 121	station 227, GTD case ironi o to bottom (pressure,	1								

GENERAL OCEAN AREA(S): Enter the names of the oceans and/or seas in which data will be collected during the oruless – please use commonly recognised names (see, for example, International Hydrographic Bureau Special Publication No. 23, 'Limits of Oceans and Seas'). Western Mediterranean Sea

SPECIFIC AREAS: Enter a description of the area(s). Such descriptions may include references to local geographic areas, to sea floor features, or to geographic coordinates. Please insert here the number of each 5 degree square in which data were collected from the marsden square list provided at the ead of the document

Ligurian-Provencal Basin, Gulf of Lion, Balearic Sea, Algerian Basin, Central Mediterranean, Sardinian Channel, Sicily Channel, Corsica Channel Martiona spare 1421

Sicily (Channel, Corsica Channel Markens spart (51) The Lightan-Provend Bain along with the Gulf of Lon and the Bakarc Sea, forms the North-western Mediterranean Bain. This region is characterized by a general cyclose contaction involved the surface layer of Allantic Water (AW) and the Levantine Intermediae Water (LW) tayer below. In writer, by a general cyclose contaction involved the surface layer of Allantic Water (AW) and the Levantine Intermediae Water (LW) tayer below. In writer, the processes are particularly intense in the Gulf of Lons (MEDOC Group, 1070; Learna and Schott, 1991), even though they have also been reported in the Salance CS (Salan Fort, 1997) was all as the central port of the Lights Bain (Sparmocha et al., 1990). The Gulf of Lons is manly characteristed by a permater cyclone conciliant and markins introg seasonal stratistors of the physical and the Cluster the salance CS (Salan Fort, 1997) was all as the central port does to the sufficient to the spart being they have also been reported in the Salance CS (Salan Fort, 1997) was all as the central period does the sufficient. In the Gulf of Lons, the highert sufficient control is the sufficient memory allow tark from the intermediae layer does the sufficient. In the Gulf of Lons, the highert sufficient control is develops in writer and gorng gule to the volvent mining and writcal lightcores of nutritient to dees parties in the open-sea convective region. The Gurffard Mediterranean is characterised by a very complicated bottom toporgraphy, which directly allock the water exchange between the built begin topologic thanker of Salamin (Line) and Area (Line). The most scale for the operation starts out the which septial spart and even and contrale of salaming (Line) and Area (Line). The most scale for the operation and the WBED (Astration et al., 1990). The Current Mediterranean is addies to Haradies and throw while the counter contrus starts were the weight and the topologic develops and the costalt and topologic the subsect an

APPENDIX 2: ROSCOP PARAMETER CODES USED IN THE ICES-ROSCOP SYSTEM

		H28	PH
		H30	Trace elements
ROSCOP	Parameter Codes Used in the ICES-	H31	Radioactivity
ROSCOP	sustom	H32	Isotopes
NUSCOF	system	H90	Other chemical oceanographic measurements
			MARINE CONTAMINANTS/POLLUTION
METEOROLOGY HYSICAL OCEA		P01	Suspended matter
HEMICAL OCE		P02	Trace metals
	MINANTS/POLLUTION .	P03	Petroleum residues
	GY/FISHERIES *	P04	Chlorinated hydrocarbons
	GY/GEOPHYSICS _	P05	Other dissolved substances
THER (BODC/J	GOFS) CODES USED IN ROSCOP *	P12	Bottom deposits
Roscop Code	Description	P13	Contaminants in organisms
Roscop Code		P90	Other contaminant measurements
	METEOROLOGY		MARINE BIOLOGY/FISHERIES
M01	Upper air observations	B01	Primary productivity
M02	Incident radiation	B02	Phytoplankton pigments (eg chlorophyll, fluorescence)
M05	Occasional standard measurements	B71	Particulate organic matter (inc POC, PON)
M06	Routine standard measurements	B06	Dissolved organic matter (inc DOC)
M71	Atmospheric chemistry	B72	Biochemical measurements (eq lipids, amino acids)
M90	Other meteorological measurements	B72	Sediment traps
	PHYSICAL OCEANOGRAPHY	B08	Phytoplankton
H71	Surface measurements underway (T,S) *	B09	Zooplankton
H13	Bathythermograph	B03	Seston
H09	Water bottle stations	B10	Neuston
H10	CTD stations	B10	Netton
H11	Subsurface measurements underway (T,S) *	B13	Eggs & larvae
H72	Thermistor chain	B07	Pelagic bacteria/micro-organisms
H16	Transparency (eq transmissometer)	B16	Benthic bacteria/micro-organisms
H17	Optics (eg underwater light levels)	B10 B17	Phytobenthos
H73	Geochemical tracers (eg freons)	B18	Zoobenthos
D01	Current meters	B10 B25	Birds
D71	Current profiler (eg ADCP)	B25	Mammals & reptiles
D03	Currents measured from ship drift *	B14	Pelagic fish
D04	GEK	B19	Demersal fish
D05	Surface drifters/drifting buoys	B20	Molluscs
D06	Neutrally buoyant floats	B20	Crustaceans
D09	Sea level (incl. bottom pressure & inverted echosounder)	B28	Acoustic reflection on marine organisms.
D72	Instrumented wave measurements	B37	Taggings
D90	Other physical oceanographic measurements	B64	Gear research
	CHEMICAL OCEANOGRAPHY	B65	Exploratory fishing
H21	Oxygen	B90	Other biological/fisheries measurements
H74	Carbon dioxide		MARINE GEOLOGY/GEOPHYSICS
H33	Other dissolved gases		
H22	Phosphate	G01	Dredge
H23	Total - P	G02	Grab
H24	Nitrate	G03	Core - rock
H24 H25	Nitrite	G04	Core - soft bottom
H25	Total - N	G08	Bottom photography
H76	Ammonia	G71	In-situ seafloor measurement/sampling
H/6	Silicate	G72	Geophysical measurements made at depth
	Sincate	G73	Single-beam echosounding *

G74	Multi-beam echosounding *		
G24	Long/short range side scan sonar *		
G75	Single channel seismic reflection *		
G76	Multichannel seismic reflection *		
G26	Seismic refraction *		
G27	Gravity measurements		
G28	Magnetic measurements		
G90	Other geological/geophysical measurements		
	OTHER (BODC/JGOFS) CODES USED IN ROSCOP	PCO2GC01	()
ATTNZR01	(H16)Red light attenuance (unspecified beam)	PCO2PT01	0
IRRDPP01	(H17)Downwelling 2-pi PAR irradiance	PCOTXXXX	0
NPUPRYP4	(H22)Normalised phosphorous uptake (dark with antibiotic)	SNCURBPB	10
NPUPRZP4	(H22)Normalised phosphorous uptake (188 uE/m2/s with antibiotic)	SNCURBPF	0
NPUPRBP1	(H22)Normalised phosphorous uptake (188 uE/m2/s)	SNCURZPB	0
NPUPRDP1	(H22)Normalised phosphorous uptake (dark)	SNCURZPE	10
NPUPRDP4	(H22)Normalised phosphorous uptake (dark)	TCO2C1TX	0
NPUPRPP1	(H22)Normalised phosphorous uptake (azide control)	TCO2CBTX	10
NPUPRPP4	(H22)Normalised phosphorous uptake (azide control)	NAUPRBP1	
SNPURBPB	(H22)Size-fractionated normalised phosphorus uptake (188 uE/m2/s)	NUUPRBP1	()
SNPURBPE	(H22)Size-fractionated normalised phosphorus uptake (188 uE/m2/s)		()
SNPURDPB	(H22)Size-fractionated normalised phosphorus uptake (dark)	UREAMDTX	()
SNPURDPF	(H22)Size-fractionated normalised phosphorus uptake (dark)	ALPHPIP1	(E
SNPURPPB	(H22)Size-fractionated normalised phosphorus uptake (adik)	PMAXPIP1	(E
SNPURPPF	(H22)Size-fractionated normalised phosphorus uptake (azide control)	SFPXPIPE	(E
NPUPRBP4	(H22)Normalised phosphorous uptake (188 uE/m2/s)	TCUPROPZ	(E
NNUPRBP1	(H24)Normalised nitrate uptake (188 uE/m2/s)	SNCURSPB	(E
ALXXLGD2	(H30)Dissolved aluminium	CAROSSP1	(E
CDRURBP2	(H30)Cadmium relative uptake rate (188 uE/m2/s)	CHLBSSP1	(E
CDRURDP2	(H30)Cadmium relative uptake rate (H30 ULM2/3)	CHLCSSP1	(E
CORURBP2	(H30)Cobalt relative uptake rate (188 uE/m2/s)	CPHLPR01	(E
CORURDP2	(H30)Cobalt relative uptake rate (dark)	CPHLFLP1	(E
MNRURBP2	(H30)Manganese relative uptake rate (188 uE/m2/s)	CPHLSSP1	(E
MNRURDP2	(H30)Manganese relative uptake rate (H30 UE/H2/3)	PHAESPP1	(
ZNRURBP2	(H30)Zinc relative uptake rate (188 uE/m2/s)	PHAESPPZ	(E
ZNRURDP2	(H30)Zinc relative uptake rate (dark)	PHFXFLXX	(E
3H1HMXTX	(H32)Tritium/hydrogen atomic ratio	CORGCOD1	(E
D13CMOPC	(H32)Particulate organic carbon 13C enrichment	CORGCOD2	(
D180MXFZ	(H32)Unspecified benthic foramenifera test	NTOTCNP1	(E
IORTAMDP	(H32) odine 129 to 127 ratio	NTOTCNPZ	(E
SEIRAMDP	(H32)Standard Error of 1/29/127	CORGCAP1	(E
HEXCMXXX	(H33)Dissolved helium	CORGCNPZ	(
DSF6GCDX	(H73)Dissolved heitum	CORGCNP3	(E
		OCFXCZXX	(E
F113GCTX	(H73)Freon - 113		
FR11GCTX	(H73)Freon - 11		
FR12GCTX	(H73)Freon - 12		
QCMXGCTX	(H73)Tetrachloromethane(CCl4)		
TCEAGCD3	(H73)Dissolved Trichloroethane (C2H3Cl3)		
NCUPRZP4	(H74)Normalised carbon uptake (188 uE/m2/s with antibiotic)		
NCUPRBP1	(H74)Normalised carbon uptake (188 uE/m2/s)		
NCUPRBP4	(H74)Normalised carbon uptake (188 uE/m2/s)		
PCO2C101	(H74)pCO2		

PCO2GC01	(H74)pCO2 by Gas chromatography
PCO2PT01	(H74)pCO2 at potential temperature
PCOTXXXX	(H74)Temperature of pCO2 determination
SNCURBPB	(H74)Size-fractionated normalised carbon uptake (188 uE/m2/s)
SNCURBPF	(H74)Size-fractionated normalised carbon uptake (188 uE/m2/s)
SNCURZPB	(H74)Size-fractionated normalised carbon uptake (188 uE/m2/s with antibiotic)
SNCURZPF	(H74)Size-fractionated normalised carbon uptake (188 uE/m2/s with antibiotic)
TCO2C1TX	(H74)Total dissolved inorganic carbon (TCO2)
TCO2CBTX	(H74)Total dissolved inorganic carbon (TCO2)
NAUPRBP1	(H76)Normalised ammonium uptake (188 uE/m2/s)
NUUPRBP1	(H90)Normalised urea uptake (188 uE/m2/s)
UREAMDTX	(H90)Urea (unfiltered)
ALPHPIP1	(B01)ALPHPIP1 Quantum yield (alpha)
PMAXPIP1	(B01)Photosynthetic maximum (Pmax)
SFPXPIPE	(B01)Size frac. photosynthetic maximum (Pmax)
TCUPROPZ	(B01)Carbon uptake over incubation
SNCURSPB	(B01)Size-fractionated normalised carbon uptake (natural light)
CAROSSP1	(B02)Spectrophotometric carotenoid pigments (SCOR)
CHLBSSP1	(B02)Spectrophotometric chlorophyll-b (SCOR)
CHLCSSP1	(B02)Spectrophotometric chlorophyll-c (SCOR)
CPHLPR01	(B02)In-situ fluorometer chlorophyll
CPHLFLP1	(B02)Fluorometric chlorophyll-a
CPHLSSP1	(B02)Spectrophotometric chlorophyll-a (SCOR)
PHAESPP1	(B02)Spectrophotometric phaeopigments (Lorenzen)(GF/F filter)
PHAESPPZ	(B02)Spectrophotometric phaeopigments (Lorenzen)(Unspec filter)
PHFXFLXX	(B02)Fluorometric phaeopigment flux
CORGCOD1	(B06)Dissolved Organic carbon (GFF Filter)
CORGCOD2	(B06)Dissolved Organic carbon (.4um filter)
NTOTCNP1	(B71)Particulate total nitrogen (PON)(C/N analyser GFF filter)
NTOTCNPZ	(B71)Particulate total nitrogen (PON)(C/N analyser unspecified filter)
CORGCAP1	(B71)Particulate organic carbon (POC)(acidified-C/N analysis GFF filter)
CORGCNPZ	(B71)Particulate organic carbon (POC)(Unacidified C/N analysis unspecified filter)
CORGCNP3	(B71)Particulate organic carbon (POC)(Unacicified C/N analysis GFC filter)
OCFXCZXX	(B71)Particulate organic carbon flux (acidification unspecified)

APPENDIX 3: 5 DEGREE MARSDEN SQUARES (CENTRAL POINT)

	den
Mandom Marchine (2012)	Mansken Mansken 580:1 580:2 580:2 570:2 570:2 5775:2 5775:2 5775:2 5775 5775
Lumine Lu	Latitude 125.5 125.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Longinde (2.5 +
Minedan Minedan (0011) (0012)((0012))((0012))((0012	Munsiden Munsiden 564:12 564:12 566:12 566:13 566:13 566:13 566:13 566:13 566:13 556:1
	Longinde Laninde -1255 - 725 -1256 - 725 -1256 - 725 -1155 - 725 -125 -125 -125 -125 -125 -125 -125 -1
NARSS (Correction) 1.000/000000 1.000/000000 1.000/000000 1.000/000000 1.000/000000 1.000/000000 1.000/00000 1.000/00000 1.000/00000 1.000/000000 1.000/00000 1.000/00000 1.000/000000 1.000/000000 1.000/000000 1.000/000000 1.000/000000 1.000/000000 1.000/000000 1.000/000000 1.000/000000000 1.000/0000000000	Longind Longind 1275 1125 1125 1125 1125 1125 1125 1125
S. C.	
K.M.KSDEN Manufan Manufan Manufan (223) (2	Munsken Munsken 883:4 883:4 883:4 883:4 883:4 883:4 883:4 883:4 883:5 975:5 9775 977
SDECREE MARKNON Lamidie NOLMERS/Corrent Point Lamidie Munden Lamidie Lamidie Lamidie <thli< th=""> Lamidie <thli< th=""></thli<></thli<>	
90 	e
9 9	Longinulo Latitude 25 .77.5 .77.5 42.5 .77.5 .77.5 42.5 .77.5 .77.5 27.3 .77.5 .77.5 27.4 .77.5 .77.5 27.5 .77.5 .77.5 27.5 .77.5 .77.5 27.5 .77.5 .77.5 27.5 .77.5 .77.5 27.5 .77.5 .77.5 27.5 .77.5 .77.5 27.5 .77.5 .77.5 27.5 .77.5 .77.5 27.5 .77.5 .77.5 27.5 .77.5 .77.5 27.5 .77.5 .77.5 27.5 .77.5 .77.5 27.5 .77.5 .77.5 27.5 .77.5 .77.5 27.5 .77.5 .77.5 27.5 .77.5 .77.5 27.5 .77.5 .77.5 27.5 .77.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Museden Longinde Lantide 567.3 37.5 77.5 567.4 27.5 77.5 566.4 97.5 77.5 566.5 97.5 77.5 566.7 97.5 77.5 566.7 97.5 77.5 566.7 97.5 77.5 566.7 97.5 77.5 566.7 97.5 77.5 566.7 97.5 77.5 569.3 97.5 77.5 569.4 97.5 77.5 569.4 97.5 77.5 569.4 97.5 77.5 569.4 97.5 77.5 569.4 97.5 77.5 569.4 97.5 77.5 569.4 97.5 77.5 589.3 112.5 77.5 589.4 107.5 77.5 589.4 107.5 77.5 589.4 107.5 77.5 589.4 107.5
Messlen 2.5 1 00:54 00:54 1 2.5 1 00:54 11.2.5 1 2.5 1 00:54 17.3 2.5 1 2.5 1 00:54 17.3 2.5 1 2.5 1 00:54 00:5 17.5 2 1 2.5 1 00:5 00:5 17.5 2 2 1 2.5 2 1 00:5 00:5 00:5 00:5 1 2.5 2 <	Museden Longinde Lantide 567.3 37.5 77.5 567.4 27.5 77.5 566.4 97.5 77.5 566.5 97.5 77.5 566.7 97.5 77.5 566.7 97.5 77.5 566.7 97.5 77.5 566.7 97.5 77.5 566.7 97.5 77.5 566.7 97.5 77.5 569.3 97.5 77.5 569.4 97.5 77.5 569.4 97.5 77.5 569.4 97.5 77.5 569.4 97.5 77.5 569.4 97.5 77.5 569.4 97.5 77.5 569.4 97.5 77.5 589.3 112.5 77.5 589.4 107.5 77.5 589.4 107.5 77.5 589.4 107.5 77.5 589.4 107.5
Longinulo 1 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	More Marcelen Leonginuele Laminele 867.3 375 777.5 866.4 975 777.5 866.4 97.5 777.5 866.5 97.5 777.5 866.6 97.5 777.5 866.7 97.5 777.5 866.7 97.5 777.5 866.7 97.5 777.5 866.3 97.5 777.5 96.3 97.5 777.5 96.3 97.5 777.5 96.3 97.5 777.5 96.3 97.5 777.5 96.3 97.5 777.5 96.3 97.5 777.5 96.3 97.5 777.5 96.3 107.5 777.5 96.3 112.5 777.5 97.6 112.5 777.5 97.6 112.5 777.5 97.6 112.5 777.5 97.6 112.5 777.5 97.6

Manden 540.1 540.2 590.2 599.2 599.2 599.2 599.2 599.5 599.5 599.5 599.5 599.5 499.5	491.3 490.4 490.3 488.3 488.3 488.3 488.3 488.3 488.3 488.4 486.3 486.3 486.3 486.3	Manuskin 40021 4002 4002 4013 4013 4013 4013 4013 4013 4013 4013
Laitine 02.5 02.5 02.5 02.5 02.5 02.5 02.5 02.5	-57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5 -57.5	
Longinde Longinde 1125 1125 1125 1125 1225 1225 1225 122	-112.5 -107.5 -107.5 -102.5 -92.5 -92.5 -87.5 -87.5 -67.5 -62.5 -62.5 -57.5	Longhuide (Longhuide (172,5 1172,5 1172,5 1172,5 1172,5 1172,5 1172,5 1173,5 11
Mansden 22:22 22:22 22:21 22:21 22:21 22:21 22:21 22:21 22:21 23:22 23:2	546:1 546:2 546:2 546:1 546:1 544:2 542:1 542:1 542:1 542:2 542:2 542:2 541:2	488.2 488.2 488.2 488.2 488.2 488.2 488.2 488.2 515.2 505.20
ę	-62.5 -62.5 -62.5 -62.5 -62.5 -62.5 -62.5 -62.5 -62.5 -62.5	Lumine Lamine 2015 2015 2015 2015 2015 2015 2015 2015
Longinde -77.5 -77.5 -77.5 -77.5 -77.5 -47.5 -47.5 -47.5 -47.5 -47.5 -47.5 -77	22.5 37.5 60.5 60.5 72.5 72.5 92.5 92.5 92.5 92.5 102.5	2.2016/00/04/04/22.55 2.22.55 2.22.55 2.25 2.25 2.25 2.
Mansden 945:4 945:4 942:4 942:4 942:5 9420	229.2 229.1 229.1 228.1 227.1 227.1 227.1 226.1 226.1 225.1 225.1 225.1 225.1 225.1 225.1 224.1	Mansden Mansden 802;4 301;4 300;5 300;5 300;5 300;5 300;5 300;5 300;5 300;5 300;5 300;5 300;5 300;2 300;2 300;2 300;2 300;2 300;2 300;2 300;2 300;2 300;2 300;4 300;2 300;5 30
Latitude 47.5 47.5 47.5 47.5 47.5 47.5 47.5 47.5	40.5 40.5 40.5 40.5 40.5 40.5 40.5 40.5	Lutitude 2015 2015 2015 2015 2015 2015 2015 2015
Longinude 92,5 92,5 97,5 97,5 11,2 11,2 11,2 11,2 11,2 11,2 11,2 11	-137.5 -132.5 -127.5 -127.5 -127.5 -117.5 -117.5 -117.5 -117.5 -117.5 -117.5 -117.5 -117.5 -127.5 -92.5 -87.5 -87.5	Longhuide 147555 147555 147555 147555 147555 147555 147555 1475555 1475555 1475555 14755555 1475555555555
Marken 2663 2663 2663 2663 2064 2054 2054 2054 2054 2054 2054 2055 2055	5954 5485 5485 5485 5485 5485 5485 5485	Allassden 4864.3 4864.3 4864.3 4864.3 4864.3 485.3 485.5 485
All Latitude 475 475 475 475 475 475 475 475 475 475 475 475 475 475 475 475 475 475 475 475 475 475 475 475 475 475 475 475 475 475 475 475 475 475 475 475 475 475	675 675 675 675 675 675 675 675 675 675	Latinda Latinda 2015
Longitude 102.5 97.5 97.5 97.5 97.5 97.5 97.5 97.5 97	275 325 375 475 475 575 575 675 675 775 825 825	Longinde (1936) 475 475 475 475 475 475 475 275 275 275 275 275 275 275 275 275 2

Minukan Minukan 4222 4223 4223 4225 4225 4225 4225 4225	23724 23724 24725 24075 44054 44054 44054 44054 44054 44054 44054 44054 44054 44053 33955 33954 339555 339555 339555 339555 339555 339555 339555 339555 3395555 3395555 3395555 3395555 3395555 3395555 33955555 3395555 3395555555 33955555555
. 271.5 277.	215 2115 2115 2115 2115 2115 2115 211
Longinde 141.5 141	
Manakan 4771 4772 4772 4762 4762 4762 4762 4772 4772	4 4 252 4 252 4 252 4 252 4 252 3 265 3 265 2 265 2 265 2 265 2 265 265 265 265 265 26
Lamine Lami	
nde	1575 1675 1675 1675 1775 1775 1775 1775
Manukan 4602 4602 4602 4602 4552 4552 4552 4552 4552 4552 4552 45	4111 4102 4102 4002 4092 4092 4092 4412 4412 4421 4412 4422 4422 4422 44
Lumine A </td <td></td>	
Longimus Lon	
Markan Markan 444.5 444.5 475.	
9	375 4003 375 4004 375 4004 375 4004 375 4004 375 4004 375 4004 375 4004 375 4004 375 4004 375 4004 375 4004 375 4004 375 4004 375 4055 325 4042 325 4042 325 4014 325 4012 325 4013 325 4013 325 4013 325 4013 325 4013 325 4013 325 4013 325 4013 325 4013 325 4013 325 4013
9	1325 13 1325 14 1475 14 1475 14 1475 14 1475 14 1475 14 1475 14 1475 14 1475 14 1475 14 1475 14 1475 14 1475 14 1755 14 1475 14 1425 14 1425 14 1425 14 1425 14 1425 14 1425 14 1425 14 1425 14 1425 14 1425 14 1425 14 1425 14 1425 14

Marsdan 340.5 339.4 339.4 339.4 339.4 339.4 339.5 339.5 339.5 366.5 397.5 397.5 397.5 397.5 397.5 397.5 397.5 397.5 397.5 397.5 397.5 397.	322;3 322;4 321;3 321;3 320;3 320;4 320;4 320;4 320;4 320;4 320;4 31;3 31;2 31;2 31;2 31;2 31;2 31;2 31;2
Latitude 1.155 1.175	-7.5 -7.5 -7.5 -7.5 -7.5 -7.5 -7.5 -7.5
Longinde -42.8 -42.8 -42.8 -42.8 -42.8 -22.5 -22.5 -27.	132.5 137.5 147.5 142.5 142.5 142.5 157.5 157.5 167.5 177.5 -177.5 -177.5 -167.5
Mansien Mansien 1985: 1985: 1985: 1986: 19	20054 20054 20055 20055 20054 20055
	-7.5 -7.5 -7.5 -7.5 -7.5 -7.5 -7.5 -7.5
$\begin{array}{rc c c c c c c c c c c c c c c c c c c $	-57.5 -57.5 -42.5 -42.5 -42.5 -32.5 -32.5 -32.5 -12.5 -12.5 -12.5 -2.5 -2.5 -2.5
Mansden 3778: 37788: 37788: 37788: 37788: 37788: 37788: 37788: 37788:	361.2 360.1 356.1 358.1 358.1 358.1 358.1 356.1 356.1 356.1 356.1 356.1 356.1 356.1
Latitude Lat	-12.5 -12.5 -12.5 -12.5 -12.5 -12.5 -12.5 -12.5 -12.5 -12.5 -12.5
$\begin{array}{c c} \mbox{Longime} \\ \mbox{Longime} \\ \mbox{Longime} \\ \mbox{Longime} \\ \mbox{Link} \\ Lin$	107.5 112.5 117.5 127.5 127.5 137.5 142.5 147.5 147.5 157.5 152.5 152.5 152.5 152.5 152.5 152.5 152.5 152.5 152.5 152.5 167.5
Maradem 393646 39373 39583 39563 39563 39563 39563 39554 39554 39551 38561 38561 38561 38561 38562 355562 3555562 355562 355562 3555562 3555562 3555562 3555562 3555562 35555562 35555555555	34년 34년2 34년2 34년2 34년1 34년1 3382 3382 3382 3382 3382
Latitude 275 275 275 275 275 275 275 275 275 275	-125 -125 -125 -125 -125 -125 -125 -125
Longinue 975 975 975 975 975 975 1075 1175 1175 1175 1175 1175 1175 1175 1175 1175 1175 1175 1175 1275 </td <td>42.5 -77.5 -77.5 -67.5 -67.5 -67.5 -67.5 -47.5 -47.5 -47.5 -47.5 -37.5 -27.5 -27.5</td>	42.5 -77.5 -77.5 -67.5 -67.5 -67.5 -67.5 -47.5 -47.5 -47.5 -47.5 -37.5 -27.5 -27.5

Marselin Marselin 012 012 022 022 022 022 022 022	043.3
Latitude 1. A function of the second of the	
Longinude 95.5 67.5 97.5 67.5 67.5 67.5 67.5 67.5 67.5 67.5 77.5 77.5 77.5 77.5 77.5 112.5 117.5 112.5 117.5 112.5 117.5 112.5 117.5 117.5 <td>-67.5</td>	-67.5
Marsden 014:1 013:2 013:2 013:2 013:2 013:2 013:2 013:2 013:2 013:2 013:2 000:1 000:2 0000:2 000:2 000:2 000:2 000:2 000:2 000:2 000:2 000:2 000:2 000	062:1
Latitude 2255 2255 2255 2255 2255 2255 2255 22	
Longinude -112.5 -122.5 -122.5 -122.5 -122.5 -122.5 -122.5 -122.5 -122.5 -122.5 -122.5 -122.5 -122.5 -122.5 <td< td=""><td>97.5 102.5</td></td<>	97.5 102.5
Manackan 3322 3322 3322 3312 3312 3312 3312 331	045:2
Latitude Latitude 2.55	
Longitude 23.5 47.5 23.5 47.5 23.5 47.5 24.5 47.5 25.5 62.5 27.5 62.5 27.5 62.5 27.5 62.5 27.5 62.5 27.5 62.5 27.5 62.5 27.5 107.5 27.5 112.5 27.5 112.5 27.5 112.5 27.5 112.5 27.5 112.5 27.5 112.5 27.5 112.5 27.5 112.5 27.5 112.5 27.5 112.5 27.5 112.5 27.5 112.5 27.5 112.5 27.5 112.5 27.5 112.5 27.5 112.5 27.5 112.5 27.5 112.5 27.5 112.5 27.5	-92.5 -87.5
Marsden 18, 2 18, 2 19, 2	029:3
Latitude 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	
Longinuk 147.5 172.5 172.5 172.5 172.5 172.5 172.	775

Minsken 093.2 092.2 092.2 092.4 092.4 092.4 092.4 092.4 092.4 086.4 088.3 098.3 098.3 098.3 098.3 098.3 098.3 098.3 098.3 008.3 008.3 008.3 008.3 0089.3 008.3 009.3 009.3 009.3 009.3 009.3 009.3 009.3 009.3 0000.3 000.3 000.3 000.3 000.3 000.3 000.3 000.3 000.3 000.3 00	Marken Marken 123-3 122-4 122-3 122-3 122-3 122-3 122-3 1112-4 112-4 11
Laitinde 2225 2225 2225 2225 2225 2275 2275 227	2016 2016 2015 2015 2015 2015 2015 2015 2015 2015
Longinude Longinude 18255 18255 18255 17755 11725 117555 117555 1175555 1175555 11755555555	Longinde 147555 147555 147555 14755555 1475555555555
Mansden 076;1 075;2 075;2 073;2 073;2 107;1 107;1 107;2 107;2 106;2 100;2 100;2 100;2 100;2 100;2 100;2 100;2 100;2 100;2 100;2 100;2 100;2 100;2 100;2 100;2 099;2 009;2 000;	Massian Massian 14:2: 14:1: 14:1: 14:1: 14:1: 14:1: 14:1: 14:1: 14:1: 14:1: 15:2:1: 15:2: 15:2:15:2:
Latitude 2225 5 2225 5 2255 5 2555 5 25555 5 25555 5 25555 5 25555 5 255555555	1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
Longinulo 22.5 22.5 22.5 22.5 22.5 22.5 22.5 2.5	Longinde 1755 2255 2275 2275 2275 2275 2275 4755 475
Mansden (1992) (Mundan Mundan 1261 1252 1253 1254 1254 1254 1254 1254 1252 1252 1252
Latitude 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5	wde
9a	
Leonghuide 132.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 1	90000000000000000000000000000000000000
	District 1275
Initiudie Marsden Longin 17.5 042;4 132.5 17.5 042;4 132.5 17.5 042;4 132.5 17.5 042;4 132.5 17.5 040;5 142.5 17.5 040;5 142.5 17.5 040;5 142.5 17.5 039;4 147.5 17.5 039;4 147.5 17.5 039;4 147.5 17.5 039;4 147.5 17.5 039;4 147.5 17.5 039;4 147.5 17.5 070;5 147.5 17.5 070;5 147.5 17.5 070;5 147.5 17.5 070;5 147.5 17.5 06;4 147.5 17.5 06;4 147.5 17.5 06;4 147.5 17.5 06;4 147.5 17.5 06;4 147.5 17.5 <	Moscie Distribution 073.4 117.5 073.3 117.5 073.3 117.5 073.4 117.5 073.4 117.5 073.4 117.5 073.4 117.5 073.4 117.5 073.4 117.5 073.4 117.5 073.4 117.5 073.4 117.5 073.5 105.4 010.4 117.5 010.3 117.5 010.3 117.5 010.4 117.5 010.3 117.5 010.3 117.5 010.3 97.5 010.3 97.5 010.3 97.5 010.3 97.5 010.3 97.5 010.3 97.5 010.3 97.5 010.3 97.5 010.3 97.5 010.3 97.5 02.4 97.5 02.4

Marskin Marskin 1593 1593 1593 1593 1593 1593 1593 1593	20734 20653 20553 20534 2043 2043 20334 20334
Initiude 475	
Longinule 205 <td>97.5 102.5 107.5 117.5 117.5 127.5 132.5 137.5</td>	97.5 102.5 107.5 117.5 117.5 127.5 132.5 137.5
Marsden Marsden 1775:1 1775:1 1775:2 1775:2 1775:2 1775:2 1775:2 1775:2 1775:2 1775:2 1775:2 1775:2 1775:2 1862:1 1862:1 1862:1 1862:1 1862:2 1863:2 1864:2	180:3 189:3 188:4 188:3 187:4 187:4 187:3 187:3 186:3 186:3
Inditude 1.aditude 4.25<	
Longinude Lamitude 07.5 42.5 77.5 42.5 77.5 42.5 77.5 42.5 77.5 42.5 77.5 42.5 77.5 42.5 97.5 42.5 97.5 42.5 97.5 42.5 97.5 42.5 97.5 42.5 97.5 42.5 97.5 42.5 97.5 42.5 97.5 42.5 97.5 42.5 97.5 42.5 97.5 42.5 97.5 42.5 97.5 42.5 97.5 47.5 97.5 47.5 97.5 47.5 97.5 47.5 97.5 47.5 97.5 47.5 97.5 47.5 97.5 47.5 97.5 97.5 97.5 97.5 <t< td=""><td>-92.5 -87.5 -87.5 -77.5 -67.5 -57.5 -57.5 -52.5</td></t<>	-92.5 -87.5 -87.5 -77.5 -67.5 -57.5 -57.5 -52.5
Minsden 1571 1572 1562 1562 1562 1562 1562 1562 1562 156	209:1 209:2 208:1 207:1 207:2 206:1 206:1 206:1 205:1
Latitude Latitude Latitude Latitude Latitude Latitude Latitude Latitude Latitude Latitude Latitude Latitude Latitude Latitude Latitude Latitude Latitude Latitude Latitude Latitude Latitude Latitude Latitude <	
n a a a a a a a a a a a a a a a a a a a	72.5 77.5 82.5 87.5 92.5 92.5 102.5 107.5 107.5 112.5
Marsdan Marsdan 140, 4 140, 4 138, 4	1922 1922 1912 1912 1902 1902 1892 1882 1882
nde le	22.5 22.5 22.5 22.5 1 22.5 1 22.5 1 22.5 1 22.5 1 22.5 1 22.5 1 22.5 1 22.5 1 22.5 1 22.5 1 22.5 1 22.5 22.5
Longitude 42.5 42.5 52.5 52.5 52.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5 82.5 82.5 82.5 82.5 92.5 92.5 112.5 122.5 <	

Minologi Minologi 22524 22524 22524 22524 22554 225555 22555 225555 225555 225555 225555 225555 225555 225555 225555 2255555 225555 225555 225555 225555 2255555 225555 225555 2255555 2255555 2255555 22555555
Latinuk 1.15 1.1
$\begin{array}{c} \mbox{Longitude} \\ \mbox{Longitude} \\ \mbox{2.5} \\$
Minneken Minneken 236(2) 236(2) 236(2) 233(3
Image Image 0.2.5 0.2.5 0.2.5 0.2.5 0.2.5 0.2.5 0.7.5 0.7.5 0.7.5
Longinde 10755 117555 117555 117555 117555 117555 117555 117555 117555 117555
Masslen Masslen 219:1 219:1 219:1 219:1 219:1 219:1 259:1 259:1 259:1 249:1 22
Longinule 125 Longinule 0.5 Longinule 0.5 -125 0.05 -125 0.05 -125 0.05 -25 0.05 -25 0.05 -25 0.05 -25 0.05 -25 0.05 -25 0.05 -25 0.05 -25 0.05 -25 0.05 -25 0.05 -265 0.05 -275 0.05 -275 0.05 -275 0.05 -275 0.05 -275 0.05 -275 0.05 -275 0.05 -275 0.05 -275 0.05 -275 0.05 -275 0.05 -275 0.05 -275 0.05 -275 0.05 -275 0.05 -275 0.05 -275 0.05
Longhude 22.5 2.2.5
Longinule Latitude Marsden 147.5 57.5 200.3 147.5 57.5 200.3 147.5 57.5 200.3 147.5 57.5 200.3 147.5 57.5 200.3 147.5 60.5 57.5 200.3 147.5 60.5 57.5 200.3 147.5 60.5 234.2 200.4 147.5 60.5 234.2 200.4 147.5 60.5 234.2 200.1 147.5 60.5 234.2 200.1 147.5 60.5 234.2 200.1 147.5 60.5 234.2 200.1 147.5 60.5 234.2 200.1 247.5 60.5 224.2 200.1 247.5 60.5 224.2 200.1 247.5 60.5 224.2 200.1 247.5 60.5 224.2 200.1 247.5 60.5 224.2
Longjuide Latitude Mareden 77.5 82.5 929.2 92.5 82.5 928.1 92.5 82.5 928.1 92.5 82.5 92.2 92.5 82.5 92.1 92.5 82.5 92.1 92.5 82.5 92.1 92.5 82.5 92.2 92.5 82.5 92.2 92.5 82.5 92.2 117.5 82.5 92.2 117.5 82.5 92.1 117.5 82.5 92.1 127.5 82.5 92.1 137.5 82.5 92.1 157.5 82.5 92.1 157.5 82.5 92.1 167.5 82.5 92.1 172.5 82.5 92.1 172.5 82.5 92.1
E Initiale Marvadan R25 9121 20 R25 9121 20 R25 9101 20 R25 9101 20 R25 9001 20 R25 9021 20 </td

62.5 67.5 72.5

 $\begin{array}{r} -37.5 \\ -32.5 \\ -22.5 \\ -17.5 \\ -17.5 \\ -17.5 \\ -2.$

ongitude

ISBN 978-960-9798-12-9

